Hydrodynamic loads on bodies (Part II) ====================================== First order loads ~~~~~~~~~~~~~~~~~ Hydrodynamic forces and moments are obtained from direct pressure integration over the body surface. The body gravity center will be used as a reference for body movements and moments acting on it. .. math:: \begin{aligned} & \boldsymbol{F}^1 = \int_{S_B^0}P_p^1 \boldsymbol{n}_p^0 ds - \int_{S_{TS}^0} P_p^1 \boldsymbol{n}_p^0 ds = \boldsymbol{F}_H^0 + \boldsymbol{F}_H^1 + \boldsymbol{F}_D^1 + \boldsymbol{F}_{TS}^1 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}^1 = \int_{S_B^0} P_p^1 \left( \boldsymbol{x}_G - \boldsymbol{x}_p \right) \times \boldsymbol{n}_p^0 ds - \int_{S_{TS}^0} P_p^1 \left( \boldsymbol{x}_G - \boldsymbol{x}_p \right) \times \boldsymbol{n}_p^0 ds = \\ & = \boldsymbol{M}_H^0 + \boldsymbol{M}_H^1 + \boldsymbol{M}_D^1 + \boldsymbol{M}_{TS}^1 \end{aligned} :label: where sub-index :math:`H` stands for hydrostatic loads, :math:`D` stands for dynamic loads, and :math:`TS` for transom stern. Hydrostatic loads ~~~~~~~~~~~~~~~~~ The hydrostatic loads are split as follows: .. math:: \begin{aligned} & \boldsymbol{F}_H^0 = - \int_{S_B^0} \rho g z \boldsymbol{n}_p^0 ds = \rho g ∀ \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_H^0 = - \int_{S_B^0} \rho g z \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{F}_H^1 = - \int_{S_B^0} \rho g r_pz^1 \boldsymbol{n}_p^0 ds = \overline{\overline{\boldsymbol{K}_H}} \Delta ^1 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_H^1 = - \int_{S_B^0} \rho g r_pz^1 \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds = \overline{\overline{\boldsymbol{K}_H}} \theta^1 \end{aligned} :label: where :math:`∀` is the body displacement, and :math:`\overline{\overline{K_H}}` is the hydrostatic restoring matrix (defined in section 3.2). Dynamic loads ~~~~~~~~~~~~~ The dynamic loads are computed as: .. math:: \begin{aligned} & \boldsymbol{F}_D^1 = -\int_{S_B^0} \rho \left( \frac{\partial φ}{\partial t} + \boldsymbol{U} \cdot \nabla_h φ + Q \right) \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_D^1 = -\int_{S_B^0} \rho \left( \frac{\partial φ}{\partial t} + \boldsymbol{U} \cdot \nabla_h φ + Q \right) \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: where :math:`\boldsymbol{U}` and :math:`\boldsymbol{Q}` depends on the flow approximation used as follows: Kelvin flow type: .. math:: \begin{aligned} & \boldsymbol{U} = \boldsymbol{U}_b \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{Q} = 0 \end{aligned} :label: Double body flow type: .. math:: \begin{aligned} & \boldsymbol{U} = \boldsymbol{U}_b + \nabla_h ϕ^{DB} \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{Q} = - \frac{1}{2} \nabla_h ϕ^{DB} \nabla_h ϕ^{DB} \end{aligned} :label: Non-linear flow type: .. math:: \begin{aligned} & \boldsymbol{U} = \boldsymbol{U}_b + \nabla_h ϕ \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{Q} = - \frac{1}{2} \nabla_h ϕ \cdot \nabla_h ϕ \end{aligned} :label: Transom stern added resistance ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If a transom stern is defined, no hydrodynamic pressure will exist on the transom surface. However, since hydrostatic and dynamic loads are calculated integrating on the initial wet surface of the body, :math:`S_B^0` and the transom stern surface is included :math:`S_{TS}^0 ⊂ S_B^0`, imposing a zero pressure on the transom stern is equivalent to adding the corresponding negative pressure. Then, integrating over :math:`S_{TS}^0`, the loads obtained can be seen as added resistance due to the lack of hydrostatic and dynamic pressure. .. math:: \begin{aligned} & \boldsymbol{F}_{TS}^1 = -\int_{S_{TS}^0} P_p^1 \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_{TS}^1 = -\int_{S_{TS}^0} P_p^1 \left( \boldsymbol{x}_G - \boldsymbol{x}_p \right) \times \boldsymbol{n}_p^0 ds \end{aligned} :label: