Hydrodynamic loads on bodies (Part I) ===================================== First order loads ~~~~~~~~~~~~~~~~~ Hydrodynamic forces and moments are obtained from direct pressure integration over the body surface. The body gravity center will be used as a reference for body movements and moments acting on it. .. math:: \begin{aligned} & \boldsymbol{F}^1 = \int_{S_B^0} P_p^1 \boldsymbol{n}_p^0 ds = \boldsymbol{F}_H^0 + \boldsymbol{F}_H^1 + \boldsymbol{F}_D^1 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}^1 = \int_{S_B^0} P_p^1 \left( \boldsymbol{x}_G - \boldsymbol{x}_p \right) \times n_p^0 ds = \boldsymbol{M}_H^0 + \boldsymbol{M}_H^1 + \boldsymbol{M}_D^1 \end{aligned} :label: where sub-index :math:`H` stands for hydrostatic loads and :math:`D` stands for dynamic loads. The hydrostatic loads are split as follows: .. math:: \begin{aligned} & \boldsymbol{F}_H^0 = -\int_{S_B^0} \rho gz\boldsymbol{n}_p^0 ds = \rho g\forall \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_H^0 = -\int_{S_B^0} \rho gz \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{F}_H^1 = -\int_{S_B^0} \rho gr_{pz}^1 \boldsymbol{n}_p^0 ds = \overline{\overline{\boldsymbol{K}}}_H \boldsymbol{\Delta }^1 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_H^1 = -\int_{S_B^0} \rho gr_{pz}^1 \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds = \overline{\overline{\boldsymbol{K}}}_H \theta^1 \end{aligned} :label: where :math:`\forall` is the body displacement, and :math:`\overline{\overline{\boldsymbol{K}}}_H` is the hydrostatic restoring matrix, which are obtained as follows: .. math:: \begin{aligned} & ∀ = -\int_{S_B^0} z_p n_{pz} ds \end{aligned} :label: .. math:: \begin{aligned} & x_B = -\frac{1}{2∀} \int_{S_B^0} x_p^2 n_{px} ds \end{aligned} :label: .. math:: \begin{aligned} & y_B = -\frac{1}{2∀} \int_{S_B^0} y_p^2 n_{py} ds \end{aligned} :label: .. math:: \begin{aligned} & z_B = -\frac{1}{2∀} \int_{S_B^0} z_p^2 n_{pz} ds \end{aligned} :label: .. math:: \begin{aligned} & K_H (3,3) = \rho g \int_{S_B^0} n_{pz} ds \end{aligned} :label: .. math:: \begin{aligned} & K_H (3,4) = \rho g \int_{S_B^0} (y_p-y_G) n_{pz} ds \end{aligned} :label: .. math:: \begin{aligned} & K_H (3,5) = -\rho g \int_{S_B^0} (x_p - x_G) n_{pz} ds \end{aligned} :label: .. math:: \begin{aligned} & K_H (4,4) = \rho g \int_{S_B^0} (y_p - y_G)^2 n_{pz} ds + \rho g∀ (z_B - z_G) \end{aligned} :label: .. math:: \begin{aligned} & K_H (4,5) = -\rho g \int_{S_B^0} (x_p -x_G) (y_p - y_G) n_{pz} ds \end{aligned} :label: .. math:: \begin{aligned} & K_H (4,6) = -\rho g∀ (x_B - x_G) \end{aligned} :label: .. math:: \begin{aligned} & K_H (5,5) = \rho g \int_{S_B^0} (x_p - x_G)^2 n_{pz} ds + \rho g∀(z_B - z_G) \end{aligned} :label: .. math:: \begin{aligned} & K_H (5,6) = -\rho g∀ (y_B - y_G) \end{aligned} :label: where :math:`B` stands for the body center of buoyancy, and :math:`G` for the body center of gravity. The dynamic loads are computed as: .. math:: \begin{aligned} & F_D^1 = -\int_{S_B^0} \rho \frac{\partial \varphi^1}{\partial t} \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} \boldsymbol{M}_D^1 = -\int_{S_B^0} \rho \frac{\partial \varphi^1}{\partial t} \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: Second order loads ~~~~~~~~~~~~~~~~~~ Up to second order loads can be split as: .. math:: \begin{aligned} & \boldsymbol{F}^{1+2} = \boldsymbol{F}_H^0 + \boldsymbol{F}_H^1 + \boldsymbol{F}_H^2 + \boldsymbol{F}_D^1 + \boldsymbol{F}_D^2 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}^{1+2} = \boldsymbol{M}_H^0 + \boldsymbol{M}_H^1 + \boldsymbol{M}_H^2 + \boldsymbol{M}_D^1 + \boldsymbol{M}_D^2 \end{aligned} :label: Where the hydrostatic loads are: .. math:: \begin{aligned} & \boldsymbol{F}_H^{1+2} = -\int_{S_B^0} \rho g (z_p + r_{pz}^{1+2} ) \boldsymbol{n}_p^1 ds = \boldsymbol{F}_H^0 + \boldsymbol{F}_H^1 + \boldsymbol{\theta}^1 \times \boldsymbol{F}_H^1 + \overline{\overline{\boldsymbol{K}}}_H \boldsymbol{\delta }^2 \\ & - \int_{S_B^0} \rho g \left( \overline{\overline{H}} \overrightarrow{\boldsymbol{R}^0 \boldsymbol{P}^0} \right)_z \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_H^{1+2} = -\int_{S_B^0} \rho g \left( z_p + r_{pz}^{1+2} \right) \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^1 ds = \\ & \boldsymbol{M}_H^0 + \boldsymbol{M}_H^1 + \boldsymbol{\theta}^1 \times \boldsymbol{M}_H^1 + \overline{\overline{\boldsymbol{K}}}_H \boldsymbol{\theta}^2 - \int_{S_B^0} \rho g \left( \overline{\overline{\boldsymbol{H}}} \overrightarrow{ \boldsymbol{R}^0 \boldsymbol{P}^0 } \right)_z \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: Then: .. math:: \begin{aligned} & \boldsymbol{F}_H^2 = \overline{\overline{\boldsymbol{K}}}_H \boldsymbol{\delta }^2 + \boldsymbol{\theta}^1 \times \boldsymbol{F}_H^1 - \int_{S_B^0} \rho g (\overline{\overline{\boldsymbol{H}}} \overrightarrow{\boldsymbol{R}^0 \boldsymbol{P}^0})_z \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_H^2 = \overline{\overline{\boldsymbol{K}}}_H \boldsymbol{\theta}^2 + \boldsymbol{\theta}^1 \times \boldsymbol{M}_H^1 - \int_{S_B^0} \rho g (\overline{\overline{\boldsymbol{H}}} \overrightarrow{\boldsymbol{R}^0 \boldsymbol{P}^0})_z \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: On the other hand, dynamic loads up to second order are split in four components: .. math:: \begin{aligned} & \boldsymbol{F}_D^{1+2} = \boldsymbol{F}_D^1 + \boldsymbol{F}_D^2 = \boldsymbol{F}_D^1 + \boldsymbol{F}_{D1}^2 + \boldsymbol{F}_{D2}^2 + \boldsymbol{F}_{D3}^2 + \boldsymbol{F}_{D4}^2 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_D^{1+2} = \boldsymbol{M}_D^1 + \boldsymbol{M}_D^2 = \boldsymbol{M}_D^1 + \boldsymbol{M}_D1^2 + \boldsymbol{M}_D2^2 + \boldsymbol{M}_D3^2 + \boldsymbol{M}_D4^2 \end{aligned} :label: where .. math:: \begin{aligned} & \boldsymbol{F}_{D1}^2 = -\rho \int_{S_B^0} \frac{\partial \varphi^2}{\partial t} \boldsymbol{n}_p^0 ds + \boldsymbol{\theta}^1 \times \boldsymbol{F}_D^1 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{F}_{D2}^2 = -\rho \int_{S_B^0} \left( \boldsymbol{r}_p^1 \cdot \nabla \left( \frac{\partial \varphi^1}{\partial t} \right) \right) \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{F}_{D3}^2 = -\frac{1}{2} \rho \int_{S_B^0} \left( \nabla \varphi^1 \cdot \nabla \varphi^1 \right) \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{F}_{D4}^2 = -\frac{1}{2} \rho g \int_{\Gamma_B^0} \left( \xi^1 - r_{pz}^1 \right)^2 \frac{\boldsymbol{n}_p^0}{\sqrt{1 - {n_{pz}^0}^2}} dl \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_{D1}^2 = -\rho \int_{S_B^0} \frac{\partial \varphi^2}{\partial t} \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds + \boldsymbol{\theta}^1 \times \boldsymbol{M}_D^1 \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_{D2}^2 = -\rho \int_{S_B^0} \left(r_p^1 \cdot \nabla \left( \frac{\partial \varphi^1}{\partial t} \right) \right) \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_{D3}^2 = -\frac{1}{2} \rho \int_{S_B^0} \left( \nabla \varphi^1 \cdot \nabla \varphi^1 \right) \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds \end{aligned} :label: .. math:: \begin{aligned} & \boldsymbol{M}_{D4}^2 = -\frac{1}{2} \rho g \int_{\Gamma_{B}^0} \left( \xi^1 - r_{pz}^1 \right)^2 \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \frac{\boldsymbol{n}_p^0}{\sqrt{1 - {\boldsymbol{n}_{pz}^0}^2}} dl \end{aligned} :label: Mean drift loads ~~~~~~~~~~~~~~~~ Being the first and second order responses harmonic and taking time average, the following relations holds when: .. math:: \begin{aligned} \Big=0 \end{aligned} :label: .. math:: \begin{aligned} \Big=0 \end{aligned} :label: .. math:: \begin{aligned} & \Big = \Big<\boldsymbol{\theta}^1 \times \boldsymbol{F}_H^1\Big> - \Big<\int_{S_B^0} \rho g \left( \overline{\overline{\boldsymbol{H}}} \overrightarrow{\boldsymbol{R}^0 \boldsymbol{P}^0} \right)_z \boldsymbol{n}_p^0 ds \Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = \Big<\boldsymbol{\theta}^1 \times \boldsymbol{M}_H^1\Big> - \Big<\int_{S_B^0} \rho g \left( \overline{\overline{\boldsymbol{H}}} \overrightarrow{\boldsymbol{R}^0 \boldsymbol{P}^0} \right)_z \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = \Big<\boldsymbol{\theta}^1 \times \boldsymbol{F}_D^1\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = - \rho \Big<\int_{S_B^0} \left( \boldsymbol{r}_p^1 \cdot \nabla \left( \frac{\partial \varphi^1}{\partial t} \right) \right) \boldsymbol{n}_p^0 ds\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = - \frac{1}{2} \rho \Big<\int_{S_B^0} \left( \nabla \varphi^1 \cdot \nabla \varphi^1 \right) \boldsymbol{n}_p^0 ds\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = - \frac{1}{2} \rho g \Big<\int_{\Gamma_B^0} \left( \xi^1 -r_{pz}^1 \right)^2 \frac{n_p^0}{\sqrt{1 - {\boldsymbol{n}_{pz}^0}^2}} dl\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = \Big<\boldsymbol{\theta}^1 \times \boldsymbol{M}_D^1\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = - \rho \Big<\int_{S_B^0} \left( r_p^1 \cdot \nabla \left(\frac{\partial \varphi^1}{\partial t} \right) \right) \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = - \frac{1}{2} \rho \Big<\int_{S_B^0} \left( \nabla \varphi^1 \cdot \nabla \varphi^1 \right) \overrightarrow{\boldsymbol{}G^0 \boldsymbol{P}^0} \times \boldsymbol{n}_p^0 ds\Big> \end{aligned} :label: .. math:: \begin{aligned} & \Big = - \frac{1}{2} \rho g \Big<\int_{\Gamma_B^0} \left( \xi^1 - r_{pz}^1 \right)^2 \overrightarrow{\boldsymbol{G}^0 \boldsymbol{P}^0} \times \frac{ \boldsymbol{n}_p^0 }{ \sqrt{ 1 - {\boldsymbol{n}_{pz}^0}^2}} dl\Big> \end{aligned} :label: Second order terms depending with non-zero time average depends on first order quantities. Hence, second order drifting loads only depends on the first order problem solution.