

# RamSeries - Validation Case 7

Large displacements in beam



Version 15.1.0

http://www.compassis.com info@compassis.com November 2018



# Table of Contents

| Chapters                                        | Pag. |
|-------------------------------------------------|------|
| Validation Case 7 - Large displacements in beam | 1    |
| Model Description                               | 1    |
| Results                                         | 3    |
| Validation Summary                              | 5    |
| References                                      | 5    |



# 1 Validation Case 7 - Large displacements in beam

#### **Model Description**

This test case is based on the Sample Solution "Large displacement three-dimensional analysis of a 45-degree bend", described in Ref. [1], and deals with the large displacement response of a cantilever 45-degree bend subjected to a concentrated end load, as shown in the following figure:







The bend has an average radius of R=100 in, cross-sectional area of A=1 in<sup>2</sup>, and lies in the X-Y plane. The concentrated tip load is applied into the Z direction.

The material is assumed to be linear elastic:

 $E = 10^7 \text{ psi}$ 



μ = 0

# Results

#### Validation Case 7 - Large displacements in beam>Results

For the sake of validation, a simulation was run using the properties described in the previous chapter, and with the following load and problem conditions:

#### Loads:

| LoadCase | P (lbf) |
|----------|---------|
| 1        | 100     |
| 2        | 300     |
| 3        | 600     |
| 4        | 900     |

Loadcases 2 and 3 (P=300 lbf and P=600 lbf) correspond to the reference loads (Ref. [1], page 980) for results comparing and validation.

The simulation has been performed using a non-linear solver, with 20 equal load steps/increments.

## Mesh:

A mesh of 8 linear beam elements (9 nodes) has been used.

## Displacements results:

The following graph corresponds to the load parameter study, coming from RamSeries results. It can be compared with the graph from the reference (Ref. [1], page 982).

In the graph, the horizontal axis corresponds to the load parameter:

$$k = (P \cdot R^2) / (E \cdot I)$$

In the vertical axis, the ratio of main deformations/radio of the circular bend are represented (|u|/R, |v|/R, |w|/R).





The following images show the deformed configurations of the 45-degree circular bend, obtained with RamSeries, for P=300 lbf (left), and P=600 lbf. They can be compared with the graph from the reference (Ref. [1], page 983).



The results obtained in RamSeries and the difference with respect to the reference solution are shown next:



| Point A (in) | x0             |           |                |
|--------------|----------------|-----------|----------------|
|              | 29.29          |           |                |
|              | x1 (RamSeries) | x1 (Ref.) | Difference (%) |
| P=100 lbf    | 27.99          |           |                |
| P=300 lbf    | 22.14          | 22.5      | 1.6            |
| P=600 lbf    | 15.59          | 15.9      | 1.96           |
| P=900 lbf    | 11.81          |           |                |
|              | y0             |           |                |
|              | 70.71          |           |                |
|              | y1 (RamSeries) | y1 (Ref.) | Difference (%) |
| P=100 lbf    | 68.55          |           |                |
| P=300 lbf    | 58.59          | 59.2      | 1.04           |
| P=600 lbf    | 46.93          | 47.2      | 0.57           |
| P=900 lbf    | 39.77          |           |                |
|              | z0             |           |                |
|              | 0.0            |           |                |
|              | z1 (RamSeries) | z1 (Ref.) | Difference (%) |
| P=100 lbf    | 18.0           |           |                |
| P=300 lbf    | 40.49          | 39.5      | 2.51           |
| P=600 lbf    | 53.69          | 53.4      | 0.53           |
| P=900 lbf    | 59.2           |           |                |

# **Validation Summary**

| CompassFEM version       | 15.1.0      |
|--------------------------|-------------|
| Tdyn solver version      | 15.1.0      |
| RamSeries solver version | 15.1.0      |
| Benchmark status         | Successfull |
| Last validation date     | 27/11/2018  |

# References

[1]Klaus-Jürgen Bathe, Saïd Bolourchi. Large Displacement Analysis of three-dimensional



Beam Structures. International Journal for Numerical Methods in Engineering. VOL. 14, 961-986 (1979).