

RamSeries - Validation Case 47

Laminated shell stiffness matrix characteristics

http://www.compassis.com

info@compassis.com

November 2018

Version: 15.1.0

1. Validation Case 47

1.1. Model Description

Basic validation and verification of the laminate's analysis models implemented in a FEA software must consider the assessment of the membrane and bending stiffness characteristics and the membrane and bending strength analysis [1]. The present document addresses the first of these issues (i.e. the membrane and bending stiffness characteristics) to assess the behavior of the classical lamination theory (CLT) implemented in RamSeries. To this aim, the benchmark problems provided in [1] are reproduced. The stiffness matrix characteristics obtained with RamSeries are compared againsts the results reported in [1].

The examples presented here comprise laminates that exhibit no coupling in the stiffness matrix with both, isotropic and orthotropic plies. A number of tests with stacking sequences leading to different forms of coupling are also presented.

In all cases, a single 4-noded quadrilateral element is used for shell discretization. An schematic representation of the shell geometry under analysis is presented in Fig.1.

Fig.1. Dimensions of the laminated shell under analysis. The shell is discretized using a single quadrilateral element.

Laminate definition and material properties are summarized for each test case in the following tables.

Benchmark name	LSM	C1
Material data		
El (N/m ²)	7.20E	+10
Et (N/m²)	7.20E	+10
ν _{tl}	0.3	3
G _{lt} N/m ²	2.76E	+10
G _{lz} N/m ²	2.76E	+10
G _{tz} N/m ²	2.76E	+10
α	2.25E	+07
α _t	2.25E	+07
σ _{it} N/m²	5.00E	+08
σ _{lc} N/m²	3.56E	+09
σ _{tt} N/m²	5.00E	+06
σ _{tc} N/m²	7.50E	+07
σ _{shr} N/m²	3.50E	+07
Laminate definition		
ply number	ply t (m)	ply theta
1	1.00E-04	0
2	1.00E-04	0
3	1.00E-04	0
4	1.00E-04	0

Table 1. Material properties and laminate's definition for case 1. It corresponds to a simple laminate consisting in four plies of isotropic material with all plies oriented at zero degrees with respect to the laminate's axes.

Benchmark name	LSM	C2
Material data		
El (N/m²)	2.13E	+11
Et (N/m²)	8.20E	+09
ν _t	0.3	3
G _{lt} N/m ²	3.20E	+09
G _{lz} N/m ²	3.20E	+09
G _{tz} N/m ²	3.20E	+09
α	1.30E	-06
α _t	2.70E	-05
σ _{lt} N/m²	5.00E	+08
σ _{lc} N/m²	3.50E	+08
$\sigma_{tt} N/m^2$	5.00E	+06
σ _{tc} N/m ²	7.50E	+07
σ _{shr} N/m ²	3.50E	+07
Laminate definition		
ply number	ply t (m)	ply theta
1	1.00E-04	0
2	1.00E-04	0
3	1.00E-04	0
4	1.00E-04	0

Table 2. Material properties and laminate's definition for case 2. It corresponds to a simple laminate consisting in four plies of orthotropic material with all plies oriented at zero degrees with respect to the laminate's axes.

Benchmark name	LSN	/IC3	
Material data			
El (N/m ²)	2.13	E+11	
Et (N/m²)	8.20	E+09	
ν _{tl}	0	.3	
G _{lt} N/m ²	3.20	E+09	
G _{lz} N/m ²	3.20	E+09	
G _{tz} N/m ²	3.20	E+09	
αι	1.30	E-06	
αt	2.70	E-05	
σ _{it} N/m²	5.00	E+08	
$\sigma_{lc} N/m^2$	3.50	E+08	
σ _{tt} N/m²	5.00E+06		
$\sigma_{tc} N/m^2$	7.50	E+07	
$\sigma_{shr} N/m^2$	3.50	E+07	
Laminate definition			
ply number	ply t (m)	ply theta	
1	1.00E-04	0	
2	1.00E-04	60	
3	1.00E-04	-60	
4	1.00E-04	0	
5	1.00E-04	0	
6	1.00E-04 -60		
7	1.00E-04	60	
8	1.00E-04	0	

Table 3. Material properties and laminate's definition for case 3. It corresponds to a symmetric balanced laminate with plies of orthotropic material.

Benchmark name	LSM	C4
Material data		
El (N/m ²)	7.80E	+06
Et (N/m²)	2.60E	+06
ν _{ti}	0.2	5
G _{lt} N/m ²	1.25E	+06
G _{iz} N/m ²	1.25E	+06
G _{tz} N/m ²	1.25E	+06
α	3.50E	-06
α _t	1.14E	-05
σ _{it} N/m²	5.00E	+08
σ _{lc} N/m²	3.50E	+08
$\sigma_{tt} N/m^2$	5.00E	+06
$\sigma_{tc} N/m^2$	7.50E	+07
$\sigma_{shr} N/m^2$	3.50E	+07
Laminate definition		
ply number	ply t (m)	ply theta
1	0.09	0
2	0.09	90

Table 4. Material properties and laminate's definition for case 4. It corresponds to a cross-ply laminate with plies of orthrtropic material. It results in a laminate with membrane/bending coupling.

Benchmark name	LSMC5					
Material data						
El (N/m ²)	2.138	+11				
Et (N/m²)	8.208	:+09				
ν _{ti}	0.	3				
G _{lt} N/m ²	3.208	-+09				
G _{lz} N/m ²	3.208	-+09				
G _{tz} N/m ²	3.208	-+09				
α	1.30	-06				
α _t	2.70	-05				
σ _{lt} N/m²	5.00E+08					
σ _{lc} N/m²	3.50E+08					
$\sigma_{tt} N/m^2$	5.008	+06				
$\sigma_{tc} N/m^2$	7.508	+07				
$\sigma_{shr} N/m^2$	3.508	+07				
Laminate definition						
ply number	ply t (m)	ply theta				
1	5.00E-05	45				
2	5.00E-05	90				
3	5.00E-05 60					

Table 5. Material properties and laminate's definition for case 5. It corresponds to an unsymmetric unbalanced laminate with plies of orthrtropic material. It results in a fully populated membrane/bending coupling matrix.

Benchmark name	LSM	06
Material data		
El (N/m ²)	2.07E-	+11
Et (N/m²)	7.60E-	+09
ν _{ti}	0.3	
G _{lt} N/m ²	5.00E-	+09
G _{lz} N/m ²	5.00E-	+09
G _{tz} N/m ²	5.00E	+09
αι	0	
α _t	3.00E	-05
σ _{it} N/m²	5.00E	+08
σ _{lc} N/m²	3.50E-	+08
σ _{tt} N/m²	5.00E	+06
σ _{tc} N/m²	7.50E-	+07
σ _{shr} N/m ²	3.50E-	+07
Laminate definition		
ply number	ply t (m)	ply theta
1	5.00E-05	90
2	5.00E-05	-45
3	5.00E-05	45
4	5.00E-05	0

Table 6. Material properties and laminate's definition for case 6. It corresponds to an unsymmetric laminate with plies of orthrtropic material, exhibiting membrane-bending coupling behavior.

1.2. Results

For the sake of validation, the terms of the membrane, bending and coupling modulus matrix obtained with RamSeries for each laminate are compared with the corresponding values reported in the NAFEMS document [1].

Benchmark name	LSMC1						
Ply angles		[0/0/0/0]					
	Theory	MSC/NASTRAN 2001	Error %	RamSeries	Error %		
Membrane modulus	matrix						
A11	7.9120E+10	7.9121E+10	0.0013	7.9121E+10	0.0011		
A12	2.3740E+10	2.3760E+10	0.0842	2.3736E+10	0.0158		
A13	0.0000E+00			0.0000E+00			
A22	7.9121E+10	7.9121E+10	0.0000	7.9121E+10	0.0002		
A23	0.0000E+00			0.0000E+00			
A33	2.7600E+10	2.7690E+10	0.3261	2.7600E+10	0.0000		
Bending modulus m	atrix						
D11	7.9120E+10	7.9121E+10	0.0013	7.9121E+10	0.0011		
D12	2.3740E+10	2.3760E+10	0.0842	2.3736E+10	0.0158		
D13	0.0000E+00			0.0000E+00			
D22	7.9121E+10	7.9121E+10	0.0000	7.9121E+10	0.0002		
D23	0.0000E+00			0.0000E+00			
D33	2.7600E+10	2.7690E+10	0.3261	2.7600E+10	0.0000		
Coupling modulus m	natrix						
B11	-	-	-	-1.4211E-06	-		
B12	-	-	-	0.0000E+00	-		
B13	-	-	-	0.0000E+00	-		
B22	-	-	-	-1.4211E-06	-		
B23	-	-	-	0.0000E+00	-		
B33	-	-		0.0000E+00	-		

Benchmark name	LSMC2					
Ply angles	[0/0/0/0]					
	Theory	MSC/NASTRAN 2001	Error %	RamSeries	Error %	
Membrane modulus						
A11	2.1370E+11	2.1374E+11	0.0187	2.1374E+11	0.0190	
A12	2.4690E+09	2.4686E+09	0.0162	2.4686E+09	0.0181	
A13	0.0000E+00			0.0000E+00		
A22	8.2290E+09	8.2285E+09	0.0061	8.2285E+09	0.0060	
A23	0.0000E+00			0.0000E+00		
A33	3.2000E+09	3.2000E+09	0.0000	3.2000E+09	0.0000	
Bending modulus m						
D11	2.1370E+11	2.1374E+11	0.0187	2.1374E+11	0.0190	
D12	2.4690E+09	2.4686E+09	0.0162	2.4686E+09	0.0181	
D13	0.0000E+00			0.0000E+00		
D22	8.2290E+09	8.2285E+09	0.0061	8.2285E+09	0.0060	
D23	0.0000E+00			0.0000E+00		
D33	3.2000E+09	3.2000E+09	0.0000	3.2000E+09	0.0000	
Coupling modulus m						
B11	-	-	-	-	-	
B12	-	-	-	-	-	
B13	-	-	-	-	-	
B22	-	-	-	-	-	
B23	-	-	-	-	-	
B33	-	-		-	-	

Benchmark name	LSMC3				
Ply angles		[0/0	50/-60/0/0/-60/60	0/0]	
	Theory	MSC/NASTRAN 2001	Error %	RamSeries	Error %
Membrane modulus					
A11	1.1750E+11	1.1753E+11	0.0255	1.1753E+11	0.0228
A12	2.1620E+10	2.1615E+10	0.0231	2.1615E+10	0.0217
A13	0.0000E+00			0.0000E+00	
A22	6.6150E+10	6.6149E+10	0.0015	6.6149E+10	0.0018
A23	0.0000E+00			0.0000E+00	
A33	2.2350E+10	2.2347E+10	0.0134	2.2347E+10	0.0145
Bending modulus m					
D11	1.3560E+11	1.3557E+11	0.0221	1.3557E+11	0.0244
D12	1.8030E+10	1.8025E+10	0.0277	1.8025E+10	0.0261
D13	4.1970E+09	4.1974E+09	0.0095	4.1974E+09	0.0085
D22	5.5290E+10	5.5289E+10	0.0018	5.5289E+10	0.0023
D23	1.2490E+10	1.2488E+10	0.0160	1.2488E+10	0.0149
D33	1.8760E+10	1.8757E+10	0.0160	1.8757E+10	0.0174
Coupling modulus m					
B11	-	-	-	4.2633E-06	-
B12	-	-	-	-4.8850E-07	-
B13	-	-	-	0.0000E+00	-
B22	-	-	-	-2.7534E-06	-
B23	-	-	-	3.5527E-07	-
B33	-	-		-2.4425E-07	-

Benchmark name	LSMC4					
Ply angles	[0/90]					
	Theory	MSC/NASTRAN 2001	Error %	RamSeries	Error %	
Membrane modulus	matrix					
A11	5.3110E+06	5.3106E+06	0.0075	5.3106E+06	0.0068	
A12	6.6380E+05	6.6384E+05	0.0060	6.6383E+05	0.0045	
A13	0.0000E+00	1.5568E-11	-	0.0000E+00	-	
A22	5.3110E+06	5.3106E+06	0.0075	5.3106E+06	0.0068	
A23	0.0000E+00	1.4702E-10	-	0.0000E+00	-	
A33	1.2500E+06	1.2500E+06	0.0000	1.2500E+06	0.0000	
Bending modulus ma	atrix					
D11	5.3110E+06	5.3106E+06	0.0075	5.3106E+06	0.0068	
D12	6.6380E+05	6.6383E+05	0.0045	6.6383E+05	0.0045	
D13	0.0000E+00	1.5568E-11	-	0.0000E+00		
D22	5.3110E+06	5.3106E+06	0.0075	5.3106E+06	0.0068	
D23	0.0000E+00	1.4702E-10	-	0.0000E+00		
D33	1.2500E+06	1.2500E+06	0.0000	1.2500E+06	0.0000	
Coupling modulus m	natrix					
B11	6.6383E+05	6.6383E+05	0.0000	6.6383E+05	0.0000	
B12	0.0000E+00	-	-	0.0000E+00	-	
B13	0.0000E+00	-3.8920E-12	-	0.0000E+00	-	
B22	-6.6383E+05	-6.6383E+05	0.0000	-6.6383E+05	0.0000	
B23	0.0000E+00	-3.6754E-11	-	0.0000E+00	-	
B33	0.0000E+00	-	-	0.0000E+00	-	

Benchmark name	LSMC5						
Ply angles		[45/90/60]					
	Theory	MSC/NASTRAN 2001	Error %	RamSeries	Error %		
Membrane modulus							
A11	2.9820E+10	2.9823E+10	0.0101	2.9823E+10	0.0091		
A12	3.2250E+10	3.2252E+10	0.0062	3.2252E+10	0.0074		
A13	2.4590E+10	2.4588E+10	0.0081	2.4588E+10	0.0083		
A22	1.3260E+11	1.3258E+11	0.0151	1.3258E+11	0.0161		
A23	3.9330E+10	3.9327E+10	0.0076	3.9327E+10	0.0072		
A33	3.2980E+10	3.2984E+10	0.0121	3.2984E+10	0.0116		
Bending modulus m							
D11	3.9420E+10	3.9420E+10	0.0000	3.9420E+10	0.0003		
D12	4.5490E+10	4.5490E+10	0.0000	4.5490E+10	0.0008		
D13	3.5520E+10	3.5516E+10	0.0113	3.5516E+10	0.0114		
D22	9.6510E+10	9.6507E+10	0.0031	9.6507E+10	0.0033		
D23	5.6810E+10	5.6806E+10	0.0070	5.6806E+10	0.0073		
D33	4.6220E+10	4.6221E+10	0.0022	4.6221E+10	0.0024		
Coupling modulus m							
B11	4.2900E+09	4.2904E+09	0.0093	4.2904E+09	0.0091		
B12	1.4183E+09	1.4183E+09	0.0000	1.4183E+09	0.0016		
B13	3.2213E+09	3.2213E+09	0.0000	3.2213E+09	0.0014		
B22	-7.1269E+09	-7.1270E+09	0.0014	-7.1269E+09	0.0006		
B23	-1.6917E+09	-1.6917E+09	0.0000	-1.6917E+09	0.0007		
B33	1.4183E+09	1.4183E+09	0.0000	1.4183E+09	0.0016		

Benchmark name	LSMC6						
Ply angles		[90/-45/45/0]					
	Theory	MSC/NASTRAN 2001	Error %	RamSeries	Error %		
Membrane modulus							
A11	8.3810E+10	8.3814E+10	0.0048	8.3814E+10	0.0044		
A12	2.6130E+10	2.6130E+10	0.0000	2.6130E+10	0.0015		
A13	0.0000E+00	-	-	0.0000E+00	-		
A22	8.3810E+10	8.3814E+10	0.0048	8.3814E+10	0.0044		
A23	0.0000E+00	2.3283E-06	-	2.3283E-06	-		
A33	2.8840E+10	2.8842E+10	0.0069	2.8842E+10	0.0071		
Bending modulus m							
D11	1.0170E+11	1.0170E+11	0.0000	1.0170E+11	0.0047		
D12	8.2480E+09	8.2481E+09	0.0012	8.2481E+09	0.0008		
D13	0.0000E+00			2.6021E-06			
D22	1.0170E+11	1.0170E+11	0.0000	1.0170E+11	0.0047		
D23	0.0000E+00	5.2042E-06		1.9516E-06			
D33	1.0960E+10	1.0961E+10	0.0091	1.0961E+10	0.0047		
Coupling modulus m							
B11	-1.8756E+10	-1.8756E+10	0.0000	-1.8756E+10	0.0014		
B12	-3.8520E-26	1.3323E-07	-	-5.3291E-07	-		
B13	-3.1260E+09	-3.1260E+09	0.0000	-3.1260E+09	0.0015		
B22	1.8756E+10	1.8756E+10	0.0000	1.8756E+10	0.0014		
B23	-3.1260E+09	-3.1260E+09	0.0000	-3.1260E+09	0.0015		
B33	0.0000E+00	8.8818E-08	-	-7.1054E-07	-		

1.3. Validation Summary

CompassFEM version	15.1.0
Tdyn solver version	15.1.0
RamSeries solver version	15.1.0
Benchmark status	Successfull
Last validation date	27/11/2018

1.4. References

[1] P. Hopkins, "Benchmarks for Membrane and bending analysis of Laminated Shells. Part 1. Stiffness matrix and thermal characteristics.," NAFEMS, 2005.