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1. MATHEMATICAL MODEL FOR WAVE 

PROBLEMS (PART I) 

1.1 Glossary 

�� Fluid velocity � Velocity potential ξ Free surface elevation �� Incident wave induced velocity � Incident velocity potential ζ Incident wave elevation �	 Diffraction-radiation wave induced velocity 
 Diffraction-radiation velocity potential η Diffraction-radiation wave elevation �
� Free surface pressure ����  Hydrostatic pressure at point P. ����  First order hydrostatic pressure variation at point P ∈ S�. ������ Up to second order hydrostatic pressure variation at point P ∈ S�. ����  First order pressure at point P induced by INCIDENT wave ������ Up to second order Pressure at point P induced by INCIDENT wave �	��  First order pressure at point P induced by DIF-RAD wave �	���� Up to second order Pressure at point P induced by DIF-RAD wave ���  First order body surface displacement at point P ����� Up to second order body surface displacement at point P �� Body surface normal vector at point P ���  Initial body surface normal vector at point P ���  Body surface normal vector after first order movement at point P ���  First order body velocity over body surface at point P ����� Up to second order body velocity over body surface at point P ��  Up to i-th order displacements 
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�  Up to i-th order linear displacements !� Up to i-th order rotational displacements "#  Second order rotation tensor Ω Fluid domain S� Instantaneous body boundary S��  Initial body boundary S��  Instantaneous body boundary corresponding to first order movements S���� Instantaneous body boundary corresponding to up to second order movements % Wave amplitude & Wave angular frequency ' Wave number (� Wave phase delay ) Water depth 

1.2 Governing equations 

1.2.1 Flow equation and boundary conditions 

Assuming incompressible flow ( 0  v ) and irrotational flow ( 0      v v ), then, the flow 

governing equations are given by: 

 Δ� = 0 -. Ω Potential flow (1-1) ∂ξ01 + ∂�∂x ∂ξ04 + ∂�∂y ∂ξ06 − ∂�∂z = 0 9. : = ; Free surface kinematic boundary condition (1-2) 

∂�∂t + 12 ∇� ⋅ ∇� + �
�A + Bξ = 0 9. : = ; Free surface dynamic boundary condition (1-3) 

�� ⋅ �� + �� ⋅ �� = 0 9. S� Body boundary condition (1-4) 

�� = −A 0�01 − 12 A∇� ⋅ ∇� − AB:� -. Ω Pressure at a point P (1-5) 

1.2.2 Solution approach 

Taylor series expansion 
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Free surface and body boundary condition (BC) will be applied on 0z  . Taylor series expansion are 

carried out to both free surface BCs around  0z   to approximate the BC on z  . Body boundary 

condition will be applied on S�� . Taylor series expansion are carried out around S��   to approximate the 

BC on S�. 

Perturbed solution 

A perturbed solution based on stokes waves approximation is used, where the velocity potential and free 

surface elevation are perturbed as: 

 � = ϵ��� + ϵ��� + ϵD�D + ⋯ (1-6) ξ = ϵ�ξ� + ϵ�ξ� + ϵDξD + ⋯ (1-7) 

 

Body movement solution is also assumed to be a perturbed solution:  

 � = F��� + F��� + FD�D … (1-8) H = F�H� + F�H� + FDHD … (1-9) 

 

Then the translational vector of any point P on the body surface can be perturbed as: 

 �� = F���� + F���� + FD��D … (1-10) 

 

where 

 �� = IJK� , JM� , JN� , OK� , OM� , ON�P = I�� , !�P (1-11) ��� = �� + !� × R�S�TTTTTTTTTT⃗  (1-12) 

����� = ���� + !��� × R�S�TTTTTTTTTT⃗ + "# R�S�TTTTTTTTTT⃗  (1-13) 

"# = 12 V−IOM� + ON�P 0 02OKOM −WOK� + ON�X 02OKON 2OMON −IOK� + OM�PY (1-14) 
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H� = IZK� , ZM� , ZN� , &K� , &M� , &N� P = I��, [�P (1-15) ��� = �� + [� × R�S�TTTTTTTTTT⃗  (1-16) 

����� = ���� + [��� × R�S�TTTTTTTTTT⃗ + "#\ R�S�TTTTTTTTTT⃗  (1-17) ��� = ��� + !� × ���  (1-18) 

 

 

Figure 1: First and second order rigid body movement 

1.3 First order approach 

1.3.1 First order governing equations 

After carrying out the Taylor series expansions, using the perturbed solution, and retaining terms of 

order , the first order governing equations become: 

 Δ�� = 0 ]� ^ (1-19) ∂ξ�01 − ∂��∂z = 0  � _ = ` (1-20) 

∂��∂t + �
�A + Bξ� = 0  � _ = ` (1-21) 

��� ⋅ ��� + ��� ⋅ ��� = 0  � ab (1-22) 
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and the first order pressure at a point ��� on the body surface is 

 ��� = �c� + �c� + �d�  � ab (1-23) 

 

where �d� = −A e�f eg , �c� = −AB:�, and �c� = −ABh�N� . 

1.3.2 First order decomposition solution 

The total velocity potential can be decomposed as: 

 �� = �� + 
� (1-24) ξ� = ζ� + i� (1-25) 

 

where �� is the incident wave potential, and 
� is the diffraction-radiation wave potential.  

First-order incident wave solution 

The incident wave velocity potential �� fulfils the following equations: 

 Δ�� = 0 ]� ^ (1-26) ∂ζ�01 − ∂��∂z = 0 j� _ = ` (1-27) 

∂��∂t + Bζ� = 0 j� _ = ` (1-28) 

∂��∂z = 0 j� _ = −" (1-29) 

 

Eqs. (1-26)-(1-28)  has an analytical solution, known as the Airy wave solution: 

 

�� = k %�B&�
coshI|q�|W) + :XPcoshW|q�|)X sinWq�t − &�1 + (�X�  (1-30) 
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ζ� = k %� cosWq�t − &�1 + (�X�  (1-31) 

 

where % is the wave amplitude, ) is a constant water depth, q = �uv WcosWwX , sinWwXX, L is the wave 

length, w is the wave propagation direction, & = �ux , T is the wave period, and ( is the wave phase 

delay. The following dispersion relation holds: 

 &�� = B|q�| tanhW|q�|)X (1-32) 

 

and the fluid pressure induced by the Airy wave in a point P is given by: 

 

���� = k AB%� coshI|q�|W) + :XPcoshW|q�|)X cos Wq�t − &�1 + (�X�  (1-33) 

 

In the asymptotic case of infinite water depth () → ∞), the factor |9}ℎ W|q|W) + :XX/|9}ℎ W|q|)X  →expW|q|:X. 

First-order diffraction-radiation wave problem 

The governing equations for the diffraction-radiation velocity potential 
� is given by: 

 Δ
� = 0 ]� ^ (1-34) ∂η�01 − ∂
�∂z = 0 j� _ = ` (1-35) 

∂
�∂t + �
�A + Bη� = 0 j� _ = ` (1-36) 

�	� ⋅ ���  = −��� ⋅ ��� − ��� ⋅ ���  j� � ∈ ab (1-37) 

 

and the fluid pressure at a point P on the body surface is given by: 

 ��� = ���� + ���� +���� + ��	�  j� � ∈ ab (1-38) 
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where ��	� = −A e	f eg , ���� = −AB:, and ���� = −ABh�N� . 

1.4 Second order approach 

1.4.1 Second-order governing equations 

After carrying out the Taylor series expansions, using the perturbed solution, and retaining terms up to 

order 2 , and considering that ���� = �� + ��, ξ��� = ξ� + ξ� , ����� = ��� + ���, ����� = ��� + ��� , H���� = H�� + H�� , ����� = ��� + ��� , ����� = ��� + ��� , ����� = ��� + ��� , the governing equations 

become: 

 Δ���� = 0 ]� ^ (1-39) 0ξ���01 − 0����0: = ξ� 00: �0��0: � − 0ξ�04 0��04 − 0ξ�06 0��06   � _ = ` (1-40) 

0����01 + �
�A + Bξ��� = −ξ� 00: �0��01 � − 12 ∇�� ⋅ ∇��  � _ = ` (1-41) 

I��� + �	� P ⋅ ��� + I��� + �	� P ⋅ ��� = −W��� ⋅ ∇�	� X ⋅ ���   � ab̀ (1-42) 

 

and the pressure at a point P on the body surface is: 

 ����� = �c� + �c��� + �d���  � ab̀ (1-43) 

 

where  �c� = −AB:�, and �c��� = −ABh�N���, and �d��� = −A e�f��eg − A��� ⋅ ∇ �e�feg � − A �� ∇�� ⋅ ∇��. 

1.4.2 Second-order decomposition solution 

Second-order incident wave solution 

The second-order total velocity potential can be decomposed as: 
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�� = �� + 
� (1-44) ξ� = ζ� + i� (1-45) 

 

where �� is the second-order incident wave potential, and 
� is the second-order diffraction-radiation 

wave velocity potential. The up to second-order incident wave potential and free surface elevation fulfils 

the following equations: 

 Δ���� = 0 ]� ^ (1-46) ∂ζ���01 − ∂����∂z = ζ� 0���0:� − 0ζ�04 0��04 − 0ζ�06 0��06  j� _ = ` (1-47) 

∂����∂t + Bζ��� = −ζ� 00: �0��01 � − 12 ∇�� ⋅ ∇�� j� _ = ` (1-48) 

∂����∂z = 0 j� _ = −" (1-49) 

 

The solution to Eqs.(1-46)-(1-49)  is as follows: 

 

���� = �� + k ���� sin I2Wq�t − &�1 + (�XP   �  

+ k k ���� cosh ��q� + q��W) + :X� sin �Wq�t − &�1 + J�X + Iq�t − &�1 + (�P�����  

+ k k ���� cosh ��q� − q��W) + :X� sin �Wq�t − &�1 + J�X − Iq�t − &�1 + (�P�����  

(1-50) 

 

where the coefficients are given in table 1. In the asymptotic case of infinite depth () → ∞) the 

coefficients ���� → 0 , ���� → ∞, ���D� → ∞, ���� → 0, ���� → 0. Then, the second order velocity potential 

becomes null. The wave elevation up to second order is obtained from: 

 

ζ��� = − 1B �∂����∂t + �A + ζ� 00: �0��01 � + 12 ∇�� ⋅ ∇�� − ��� (1-51) 

 

 and the fluid pressure induced by the second order wave potential at a point P is: 
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������ = −A �∂����∂t + 12 ∇�� ⋅ ∇��� − A ���� ⋅ ∇ �0��01 �� (1-52) 

In the asymptotic case of infinite depth () → ∞) the coefficients ���� → 0 , ���� → ∞, ���D� → ∞, ���� → 0, ���� → 0. Then, the second order velocity potential becomes null. 

 

 

Table 1: Stoke´s second-order wave potential coefficients 

���� = 3%��B|q�|8&�
coshI2|q�|W) + :XPsinhDW|q�|)X coshW|q�|)X 

���� = ∑ �����D��������  

���� = ∑ �����D��������  

����� = %�%�2B &��W&� + &�X 

����� = %�%�2B &��W&� − &�X 

����� = %�%�4B W&�&� − B� q� ⋅ q�&�&�  XW&� + &�X 

����� = − %�%�4B W&�&� + B� q� ⋅ q�&�&�  XW&� − &�X 

���D� = − %�%�2 B&� I|q�|� + q� ⋅ q�P 

���D� = %�%�2 B&� I|q�|� − q� ⋅ q�P 

���� = �q� + q��}-.ℎI�q� + q��)P − 1B I&� + &�P� coshI�q� + q��)P 

���D� = �q� − q��}-.ℎI�q� − q��)P − 1B I&� − &�P� coshI�q� + q��)P 
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Second-order diffraction-radiation wave problem 

The governing equations for the diffraction-radiation velocity potential up to second-order 
��� is given 

by: 

 Δ
��� = 0 ]� ^ (1-53) ∂η���01 − ∂
���∂z = − ∂
�∂x ∂η�04 − ∂
�∂y ∂η�06 − ∂
�∂x ∂ζ�04 − ∂
�∂y ∂ζ�06 − ∂��∂x ∂η�04 − ∂��∂y ∂η�06   � _ = ` (1-54) 

∂
���∂t + �
�A + Bi���
= −i� 00: �0
�01 � − ζ� 00: �0
�01 � − i� 00: �0��01 � − 12 ∇
� ⋅ ∇
� − ∇��
⋅ ∇
� 

 � _ = ` (1-55) 

�	� ⋅ ��� + �	� ⋅ ��� = −I��� +��� P ⋅ ��� − ����+��� + ��� ⋅ I∇�	� + ∇��� P� ⋅ ���  � � ∈ ab (1-56) 

 

and the fluid pressure at a point P on the body surface is given by: 

 ����� = ���� + ������+������ + ��	���  � � ∈ ab (1-57) 

 

where ���� = −AB:, ������ = −ABh�N���  and: 

 

��	��� = −A 0
���01 − A 12 ∇
� ⋅ ∇
� − A∇�� ⋅ ∇
� − Ah�� ⋅ ∇ �0
�01 �  � � ∈ ab (1-58) 
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2. NUMERICAL MODELS (PART I) 

2.1 Glossary 


 Diffraction-radiation velocity potential η Diffraction-radiation wave elevation �
� Free surface pressure Γ� Surface limiting the computational domain in the horizontal directions R� First order source terms in combined FS BC for second order solution S� First order source terms in kinematic BC for second order solution �̿ Laplacian FEM matrix � Vector of diffraction-radiation velocity potential at nodes �� FEM  Neumann body boundary condition  �  FEM  Neumann radiation boundary condition �¡¢ FEM  Neumann free surface boundary condition �¡£  FEM Neumann bottom boundary condition Δ1 Time step ¤WtX Wave absorption coefficient 

2.2 Finite element formulation 

This section presents the formulation based on the finite element method (FEM) to solve the system of 

the wave diffraction-radiation problem. This formulation has been developed to be used in conjunction 

with unstructured meshes. The use of unstructured meshes enhances geometry flexibility and speed ups 

the initial modelling time. 

Let *

hQ  be the finite element space to interpolate functions, constructed in the usual manner. From this 

space, we can construct the subspace 
,hQ  , that incorporates the Dirichlet conditions for the potential  . 

The space of test functions, denoted by hQ , is constructed as
,hQ  , but with functions vanishing on the 

Dirichlet boundary. The weak form of the problem can be written as follows: 

Find    ,h hQ   , by solving the discrete variational problem: 
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¥ ∇¦� · ∇
�¨Ω© = ¥ ¦� · 
ª«�¨Γ¬­ + ¥ ¦� · 
ª« ¨Γ +¬® ¥ ¦� · 
ª«¡¢¨Γ +¬¯¢
¥ ¦� · 
ª«¡°£¨Γ    ¬¯°±

 

∀¦� ∈ ³� 

(2-1) 

 

Where 
ª«�, 
ª« , 
ª«¡¢ and 
ª«¡°£  are the potential normal gradients corresponding to the Neumann 

boundary conditions on bodies, radiation boundary, free surface and bottom, respectively. At this point, 

it is useful to introduce the associated matrix form: 

 �̿� = �� + �  + �¡¢ + �¡°£ (2-2) 

 

where L is the standard laplacian matrix, and ��, � , �¡¢ , and �¡°£  are the vectors resulting of 

integrating the corresponding boundary condition terms. Regarding the bottom boundary for the 

refracted and radiated potential, it is imposed naturally in FEM by �¡°£ = 0. A detailed description of 

the FEM model implemented in SeaFEM can be found in [1] 

2.3 Free surface boundary condition 

Combining the kinematic and dynamic free surface boundary conditions, the free surface condition 

reads: 0�
01� + B 0
0: + 001 ´�
�A µ + {³�} = 0, (2-3) 

and is implemented as a Neumann boundary condition that fulfils the flux boundary integral: �¡¢ = #̧ ¬¯¢ , (2-4) 

where #̧ ¬¯¢  is the corresponding boundary mass and ³� are the transfer terms from the first-order to the 

second-order problem (see Eqs. (1-54)-(1-55)): ³� = 0g¹� − º�, (2-5) 

¹� = i� 00: �0
�01 � + ζ� 00: �0
�01 � + i� 00: �0��01 � + 12 ∇
� ⋅ ∇
� + ∇�� ⋅ ∇
�, (2-6) 

º� = ∂
�∂x ∂η�04 + ∂
�∂y ∂η�06 + ∂
�∂x ∂ζ�04 + ∂
�∂y ∂ζ�06 + ∂��∂x ∂η�04 + ∂��∂y ∂η�06  (2-7) 
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           −i� 0�
�0:� − i� 0���0:� − ;� 0�
�0:� , 
where W0g¹�X«��  = 25/12W¹�X«�� − 4W¹�X« + 3W¹�X«�� − 4/3W¹�X«�� + 1/4W¹�X«�D . Eq. (2-

3) is discretized in time using the following numerical scheme: 
«�� − 2
« + 
«��Δ1� = −B
N« − 112Δ1� BW
N«�� + 10
N« + 
N«��X − �
�«�� − �
�«��A2Δ1  

                                            + ¼− 112Δ1� WW³�X«�� + 10W³�X« + W³�X«��X½, (2-8) 

where for the specific case where �
� = 0, the above scheme becomes a fourth order compact Padé 

scheme.The free surface elevation is discretized in time using the following fourth order in time 

numerical scheme: 

i«�� = − 1BΔ1 ´2512 
«�� − 4
« + 3
«�� − 43 
«�� + 14 
«�Dµ − �
�«��AB {−Wº�X«��}. (2-9) 

2.4 Radiation condition and wave absorption 

Waves represented by ϕ are born at the bodies and propagate in all directions away from the bodies. 

These waves have to either be dissipated or to be let go out the domain so they will not come back and 

interact with the bodies. Because of this, a Sommerfeld radiation condition at the edge of the 

computational domain is introduced: 

 ∂¿ϕ + c∇ϕ · n� = 0 in Γ� (2-10) 

 

where Γ� is the surface limiting the domain in the horizontal directions, and c is a prescribed wave 

phase velocity. This radiation condition will let waves moving at velocity c to escape out the domain. 

The numerical scheme used to implement the radiation condition is 

 

W
� XÀ�� =  − 
«�� − 
«|Δ1  in Γ� (2-11) 

 

However, waves with very different velocities will not be leaving the domain. Hence, wave absorption is 

also introduced into the dynamic free surface boundary condition by varying the pressure such that: 
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�
�Wt, 1X = ¤WtXA 0
0:  (2-12) 

 

Eq. (2-12) increases pressure when the free surface is moving upwards, while decreases the pressure 

when the free surface is moving downwards. By doing this, energy is transferred from the waves to the 

atmosphere and waves are damped. However, the coefficient ¤WtX will be set to zero in the area nearby 

the bodies so that damping will have no effect on the solution of the wave structure interaction problem. 

All the numerical models for the wave diffraction-radiation problem implemented in SeaFEM are based 

on [1] and [20] 
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3. HYDRODYNAMIC LOADS ON BODIES   (PART I) 

3.1 Glossary 

� Velocity potential ξ Free surface elevation ���  First order body surface displacement at point P ����� Up to second order body surface displacement at point P ���  Initial body surface normal vector at point P ���  Body surface normal vector after first order movement at point P S��  Initial body boundary �� First order body displacements !� First order body rotations Á# c Hydrostatic restoring matrix ∀ Body displacement t� Coordinates of body center of buoyancy tÂ  Coordinates of body center of gravity t� Coordinates of a point P ÃSTTTTTT⃗  Vector t� − tÂ 

3.2 First order loads 

Hydrodynamic forces and moments are obtained from direct pressure integration over the body surface. 

The body gravity center will be used as a reference for body movements and moments acting on it. 

Ä� = ¥ ������ÅÆ¢ ¨} = Äc� + Äc� + Äd�  (3-1) 

¸� = ¥ ���ItÂ−t�P × ���ÅÆ¢ ¨} = ¸c� + ¸c� + ¸d�  (3-2) 

 

where sub-index H stands for hydrostatic loads and D stands for dynamic loads. The hydrostatic loads 

are split as follows: 
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Äc� = − ¥ AB:���ÅÆ¢ ¨} = AB∀ 
(3-3) 

¸c� = − ¥ AB:Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} (3-4) 

Äc� = − ¥ ABh�N� ���ÅÆ¢ ¨} = Á# c�� 
(3-5) 

¸c� = − ¥ ABh�N� Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} = Á# c!� 
(3-6) 

 

where ∀ is the body displacement, and  Ç# c is the hydrostatic restoring matrix, which are obtained as 

follows: 

∀= − ¥ :�.�N¨}ÅÆ¢  

4� = − 12∀ ¥ 4��.�K¨}ÅÆ¢  

6� = − 12∀ ¥ 6��.�M¨}ÅÆ¢  

:� = − 12∀ ¥ :��.�N¨}ÅÆ¢  

'cW3,3X = AB ¥ .�N¨}ÅÆ¢   
'cW3,4X = AB ¥ I6� − 6ÂP .�N¨}ÅÆ¢  

'cW3,5X = −AB ¥ I4� − 4ÂP .�N¨}ÅÆ¢  

'cW4,4X = AB ¥ I6� − 6ÂP� .�N¨}ÅÆ¢ + AB∀W:� − :ÂX 

'cW4,5X = −AB ¥ I4� − 4ÂPI6� − 6ÂP .�N¨}ÅÆ¢  

'cW4,6X = −AB∀W4� − 4ÂX 

(3-7) 
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'cW5,5X = AB ¥ I4� − 4ÂP� .�N¨}ÅÆ¢ + AB∀W:� − :ÂX 

'cW5,6X = −AB∀W6� − 6ÂX 

 

where B stands for the body center of buoyancy, and G for the body center of gravity. The dynamic 

loads are computed as: 

 

Äd� = − ¥ A 0�� 01 ���ÅÆ¢ ¨} 
(3-8) 

¸d� = − ¥ A 0�� 01 Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} 
(3-9) 

3.3 Second order loads 

Up to second order loads can be split as: 

 Ä��� = Äc� + Äc� + Äc� + Äd� + Äd�  (3-10) ¸��� = ¸c� + ¸c� + ¸c� + ¸d� + ¸d�  (3-11) 

 

Where the hydrostatic loads are: 

 

Äc��� = − ¥ ABI:� + h�N���P���ÅÆ¢ ¨}
= Äc� + Äc� + !� × Äc� + Á# c�É − ¥ AB �"# R�S�TTTTTTTTTT⃗ �N ���ÅÆ¢ ¨} 

(3-12) 

¸c��� = − ¥ ABI:� + h�N���PÃ�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨}
= ¸c� + ¸c� + !� × ¸c� + Á# c!� − ¥ AB �"# R�S�TTTTTTTTTT⃗ �N Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} 

(3-13) 

Then: 

Äc� = Á# c�É + !� × Äc� − ¥ AB �"# R�S�TTTTTTTTTT⃗ �N ���ÅÆ¢ ¨} (3-14) 
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¸c� = Á# c!� + !� × ¸c� − ¥ AB �"# R�S�TTTTTTTTTT⃗ �N Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} (3-15) 

On the other hand, dynamic loads up to second order are split in four components: 

 Äd��� = Äd� + Äd� = Äd� + Äd�� + Äd�� + ÄdD� + ÄdÊ�  (3-16) ¸d��� = ¸d� + ¸d� = ¸d� + ¸d�� + ¸d�� + ¸dD� + ¸dÊ�  (3-17) 

 

where  

 

Äd�� = −A ¥ 0�� 01 ���ÅÆ¢ ¨} + !� × Äd�  (3-18) 

Äd�� = −A ¥ ���� ⋅ ∇ �0��01 �� ���ÅÆ¢ ¨} (3-19) 

ÄdD� = − 12 A ¥ W∇�� ⋅ ∇��X���ÅÆ¢ ¨} (3-20) 

ÄdÊ� = − 12 AB ¥ Iξ� − h�N� P� ���Ë1 − .�N� �¬Æ¢ ¨Ì 
(3-21) 

¸d�� = −A ¥ 0�� 01 Ã�S�TTTTTTTTTT⃗ × ���ÅÍ¢ ¨} + !� × ¸d�  (3-22) 

¸d�� = −A ¥ ���� ⋅ ∇ �0��01 �� Ã�S�TTTTTTTTTT⃗ × ���ÅÍ¢ ¨} (3-23) 

¸dD� = − 12 A ¥ W∇�� ⋅ ∇��XÃ�S�TTTTTTTTTT⃗ × ���ÅÍ¢ ¨} (3-24) 

¸dÊ� = − 12 AB ¥ Iξ� − h�N� P� Ã�S�TTTTTTTTTT⃗ × ���Ë1 − .�N� �¬Æ¢ ¨Ì 
(3-25) 

 

3.4 Mean drift loads 

Being the first and second order responses harmonic and taking time average, the following relations 

holds when: 
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 < Ï� >= 0 (3-26) < Ñ� >= 0 (3-27) 

< Ïc� >=< !� × Äc� > −< ¥ AB �"# R�S�TTTTTTTTTT⃗ �N ���ÅÆ¢ ¨} > (3-28) 

< Ñc� >=< !� × ¸c� > −< ¥ AB �"# R�S�TTTTTTTTTT⃗ �N Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} > (3-29) 

< Ïd�� >=< !� × Äd� > (3-30) 

< Ïd�� >= −A < ¥ ���� ⋅ ∇ �0��01 �� ���ÅÆ¢ ¨} > (3-31) 

< ÏdD� >= − 12 A < ¥ W∇�� ⋅ ∇��X���ÅÆ¢ ¨} > (3-32) 

< ÏdÊ� >= − 12 AB < ¥ Iξ� − h�N� P� ���Ë1 − .�N� �¬Æ¢ ¨Ì > 
(3-33) 

< Ñd�� >=< !� × ¸d� > (3-34) 

< Ñd�� >= −A < ¥ ���� ⋅ ∇ �0��01 �� Ã�S�TTTTTTTTTT⃗ × ���ÅÍ¢ ¨} > (3-35) 

< ÑdD� >= − 12 A < ¥ W∇�� ⋅ ∇��XÃ�S�TTTTTTTTTT⃗ × ���ÅÍ¢ ¨} > (3-36) 

< ÑdÊ� >= − 12 AB < ¥ Iξ� − h�N� P� Ã�S�TTTTTTTTTT⃗ × ���Ë1 − .�N� �¬Æ¢ ¨Ì > 
(3-37) 

 

Second order terms depending with non-zero time average depends on first order quantities. Hence, 

second order drifting loads only depends on the first order problem solution. 
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4. MATHEMATICAL MODEL FOR WAVE 

PROBLEMS (PART II) 

4.1 Glossary 

ÒÓ Linear velocity of the moving body ÔÓ Angular velocity of the moving body ÕÓ Moving body total translational velocity Ö Water current velocity �� Fluid velocity � Velocity potential ξ Free surface elevation �� Incident wave induced velocity � Incident velocity potential ζ Incident wave elevation �	 Diffraction-radiation wave induced velocity 
 Diffraction-radiation velocity potential η Diffraction-radiation wave elevation �
� Free surface pressure �� First order pressure at point P induced by DIF-RAD wave �� Initial body surface normal vector at point P �� First order body velocity over body surface at point P Ω Fluid domain S� Initial body boundary % Wave amplitude & Wave angular frequency ' Wave number J  Wave phase delay ) Water depth 
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4.2 Problem statement 

In this section the wave problem is coped in the case of body moving across the fluid domain in the 

presence of waves and water currents. Both, body velocity and water current will be assumed to be 

much larger than velocities induced by waves and therefore, cannot be assumed to be first order 

magnitudes. 

We consider the first order diffraction-radiation problem of a ship moving on the horizontal plane. The 

two dimensional movement of the ship is identified by ÕÓWxX = ÒÓ + ÔÓ × W× − ×ØX , where ÒÓ and ÔÓ 

are the linear and angular velocity of the moving body. 

As before, we assume incompressible and irrotational flow, being φ the velocity potential. The 

following assumptions are made on the order of magnitude of the velocity components and free surface 

elevation ξ: 

 |ÕÓ~ÛW1X| |Ö~ÛW1X| �K~ÛW1X ÜÝ~ÞWßX 

(4-1) �N~ÛWFX �àá~ÛWFX ξK~ÛWFX ξM~ÛWFX 

 

Based on the previous assumption, the governing equations for the first order diffraction-radiation wave 

problem are: 

 Δ� = 0 -. Ω Potential flow (4-2) ∂�∂t + â ⋅ ∇ã� + 12 ∇ã� ⋅ ∇ã� + �
�A + Bξ = 0 -. : = 0 Dynamic boundary condition (4-3) 

∂ξ01 + Wâ + ∇ã�X ⋅ ∇ãξ − ∂�∂z = 0 -. : = 0 Kinematic boundary condition (4-4) 

�� ⋅ �� + Iâ + ��P ⋅ �� = 0 -. S� Body boundary condition (4-5) ∂�∂z = 0 -. : = −) Wall boundary condition (4-6) 

 

and the pressure at an arbitrary point of the fluid domain is: 

 

�� = −A ´0�01 + â ⋅ ∇ã� + 12 ∇� ⋅ ∇� + B:�µ Pressure at a point P (4-7) 
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4.3 Velocity potential decomposition 

In order to solve the governing equations provided in Eqs. (4-2)-(4-6), a velocity potential 

decomposition is introduced. The total velocity potential can be decomposed as: 

 � = � + 
 (4-8) ξ = ζ + i (4-9) 

 

where ψ and ζ  are the incident wave potential and elevation respectively, and ϕ and η  are the 

diffraction-radiation velocity potential and free surface elevation. Then, we can split the governing 

equations into the following sets of equations: 

4.3.1 Set 1: incident waves 

Δ� = 0 -. Ω (4-10) ∂�∂t + â ⋅ ∇ã� + Bζ = 0 -. : = 0 (4-11) 

∂ξ01 + â ⋅ ∇ãζ − ∂�∂z = 0 -. : = 0 (4-12) 

∂�∂z = 0 -. : = −) (4-13) 

 

This set of equations has an analytical solution (Airy waves): 

 

� = k %�B&�
coshI|q�|W) + :XPcoshW|q�|)X sinWq�Wt − â1X − &�1 + J�X�  (4-14) 

ζ = k %� cosWq�Wt − â1X − &�1 + J�X�  (4-15) 

 

4.3.2 Set 2: governing equations of wave diffraction-radiation problem 
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Δ
 = 0 -. Ω (4-16) ∂
∂t + â ⋅ ∇ã
 + 12 ∇ã
 ⋅ ∇ã
 + ∇ã� ⋅ ∇ã
 + 12 ∇ã� ⋅ ∇ã� + �
�A + Bi = 0 -. : = 0 (4-17) 

∂i01 + Wâ + ∇ã
 + ∇ã�X ⋅ ∇ãi + W∇ã
 + ∇ã�X ⋅ ∇ãζ − ∂
∂z = 0 -. : = 0 (4-18) 

�� ⋅ �� + Iâ + �� + �	P ⋅ �� = 0 -. S� (4-19) ∂
∂z = 0 -. : = −) (4-20) 

 

From first order wave theory, we know that �à~ÛWFX and ζà~ÛWFX. Then, the terms 
�� � ⋅ ∇ã�~ÛWF�X, ∇ã� ⋅ ∇ãζ~ÛWF�X, and ∇ã� ⋅ ∇ãη~ÛWF�X. Neglecting these terms in the second set of equations (Eqs. 

(4-16)-(4-20)), and using the analytical solutions of Airy waves, the governing equations for the first 

order diffraction-radiation wave problem becomes: 

 Δ
 = 0 -. Ω (4-21) ∂
∂t + â ⋅ ∇ã
 + 12 ∇ã
 ⋅ ∇ã
 + ∇ã� ⋅ ∇ã
 + �
�A + Bi = 0 -. : = 0 (4-22) 

∂i01 + Wâ + ∇ã
X ⋅ ∇ãi + ∇ã
 ⋅ ∇ãζ − ∂
∂z = 0 -. : = 0 (4-23) 

∇ã
 ⋅ �� = −I�� + â + ��P ⋅ �� -. S� (4-24) ∂
∂z = 0 -. : = −) (4-25) 

 

and the pressure induced by diffracted and radiated waves is: 

 

�� = −A ´0
01 + Wâ + ∇ã
 + ∇ã�X ⋅ ∇ã
 − 12 ∇
 ⋅ ∇
µ (4-26) 

 

Notice that the terms ∇ã� ⋅ ∇ã
  and ∇ã
 ⋅ ∇ãζ  accounts for the deviation of the incident Airy waves 

due to the fact that the incidents waves are transport by a non-uniform flow field. Also, the terms ∇ã
 ⋅ ∇ã
 and ∇ã
 ⋅ ∇ãi  are not subject to any kind of linearization so are, which enables to simulate 

non-steady base flows. 
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4.4 Governing equations in a moving frame of reference 

Based on the numerical approaches used in this work, it is convenient to solve Eqs. (4-21)-(4-25) in a 

frame of reference fixed to the moving body rather than on the global frame of reference. Therefore, the 

aforementioned equations will be solved in a local frame of reference. Figure 2 shows the global and 

local frame of reference. This frame of reference is assumed to match the global frame at time zero. For 

an observer sitting in the ship, the flow field around the ship will be  åæWtX = â − HæWtX . Therefore, the governing equations in the local frame of reference become: 

 Δ
 = 0 -. Ω (4-27) ∂
∂t + åæ ⋅ ∇ã
 + 12 ∇ã
 ⋅ ∇ã
 + ∇ã� ⋅ ∇ã
 + �
�A + Bi = 0 -. : = 0 (4-28) 

∂i01 + Wåæ + ∇ã
X ⋅ ∇ãi + ∇ã
 ⋅ ∇ãζ − ∂
∂z = 0 -. : = 0 (4-29) 

∇ã
 ⋅ �� = −I�� + â + ��P ⋅ �� -. S� (4-30) ∂
∂z = 0 -. : = −) (4-31) 

 

and the pressure induced by diffracted and radiated waves is: 

�� = −A ´0
01 + Wåæ + ∇ã
 + ∇ã�X ⋅ ∇ã
 − 12 ∇
 ⋅ ∇
µ (4-32) 

 

 
Figure 2: Global and local frame of reference. 
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where the incident wave potential and incident wave elevation must be transformed to the local frame of 

reference. 

4.5 Flow linearization 

The previous governing equations have been obtained under the assumption that �	~ÛW1X. Then, the 

free surface boundary conditions can be written as follows: 

 ∂
∂t + Wåæ + ∇ã
X ⋅ ∇ã
 − 12 ∇ã
 ⋅ ∇ã
 + ∇ã� ⋅ ∇ã
 + �
�A + Bi = 0 -. : = 0 (4-33) 

∂i01 + Wåæ + ∇ã
X ⋅ ∇ãi + ∇ã
 ⋅ ∇ãζ − ∂
∂z = 0 -. : = 0 (4-34) 

 

where çÓ + ∇ãϕ represents the convective velocity. Since the convective velocity depends on ∇ãϕ, it 

must be updated every time step to account for variations of the convective velocity. While retaining this 

assumption allows for simulating transient flows, linearization of the convective velocity is a reasonable  

practice  in many cases. While SeaFEM is capable of imposing the free surface boundary conditions 

without linearization at all, two commonly used linearizations are also available. 

4.5.1 Neumann-Kelvin linearization 

Neumann-Kelvin linearization assumes that ∇ãϕ~OWϵX. This assumption is usually made for slender 

bodies whose perturbation of the flow field is small compared to the convective velocity. Then the 

convective velocity becomes the apparent velocity between the moving body and the water åæWtX =â − HæWtX. Then the first order free surface boundary conditions become: 

 ∂
∂t + åæ ⋅ ∇ã
 + �
�A + Bi = 0 -. : = 0 (4-35) 

∂i01 + åæ ⋅ ∇ãi − ∂
∂z = 0 -. : = 0 (4-36) 

 

and the pressure induced by diffracted and radiated waves is: 
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�� = −A ´0
01 + åæ ⋅ ∇ã
 µ (4-37) 

4.5.2 Double body linearization 

Double body linearization assumes that ∇ã
~ÛW1X but can be split into two terms:  ∇ã
 = ∇ã
d� +∇ã
∗.  ∇ã
d� represents the flow field when the free surface is substituted by a wall (equivalent to a 

symmetric case using a double body). Then ∇ã
 is approximately∇ã
d�, but perturbed by ∇ã
∗, which 

means ∇ã
d�~ÛW1X and  ∇ã
∗~ÛWFX. Then the first order free surface boundary conditions become: 

 ∂
∂t + Wåæ+∇ã
d�X ⋅ ∇ã
 − 12 ∇ã
d�∇ã
d� + ∇ã
d� ⋅ ∇ã� + �
�A + Bi = 0 -. : = 0 (4-38) 

∂i01 + Wåæ+∇ã
d�X ⋅ ∇ãi+∇ã
d� ⋅ ∇ãζ − ∂
∂z = 0 -. : = 0 (4-39) 

 

and the pressure induced by diffracted and radiated waves is: 

 

�� = −A ´0
01 + Wåæ+∇ã
d�X ⋅ ∇ã
 − 12 ∇ã
d�∇ã
d� + ∇ã
d� ⋅ ∇ã�µ (4-40) 
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Figure 3: Free surface base flow based on Neumann-Kelvin (up) and double-body (down) linearization concepts. 

4.6 Transom stern boundary condition 

When considering moving bodies with transom sterns, flow detachment happens at the lower edge of the 

transom. While potential flow is incapable of predicting this sort of detachment, a transpiration model 

will be used to enforce it. To do so, the no flux body boundary condition is “not” used, on the contrary, a 

flux is allowed. The condition to be imposed is that streamlines departing from the detachment edge 

belong to the free surface. Then, the flux velocity is calculated based assuming that energy at the 

detachment edge is the same that the energy at the free surface far away downstream, where the free 

surface remains flat.  Using Bernoulli’s equation, the flux velocity to be imposed is: 

 12 Hg�� − Bℎ = 12 Hê�  

ëg� = |Hg� | cosWOg�X = ìWHê� + 2BℎX cosWOg�X  

(4-41) 

 

Figure 4 explains the transpiration model implemented in SeaFEM. 
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Figure 4: Transpiration model for transom stern Boundary condition with flow detachment. 
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5. NUMERICAL MODELS (PART II) 

5.1 Glossary 


 Diffraction-radiation velocity potential η Diffraction-radiation wave elevation �
� Free surface pressure å Free surface convective velocity íî Identity matrix Ô#  Streamline convective matrix �̿∗ Modified Laplacian FEM matrix �ï`  FEM  Dirichlet free surface boundary condition �� FEM  Neumann body boundary condition  �¡£ FEM Neumann bottom boundary condition Δ1 Time step 0v Differential operator for first derivative along streamline O Value between 0 and 1. 

 

5.2 Stream line integration 

The first order free surface boundary conditions can be written in a general, regardless whether the 

convective velocity has been linearized or not, as follows 

 ∂
∂t + å ⋅ ∇ã
 + �
�A + Bi + ¹ = 0 -. : = 0 (5-1) 

∂i01 + å ⋅ ∇ãi − ∂
∂z + S = 0 -. : = 0 (5-2) 

 

Where ¹ and º represent some remaining terms. The numerical schemes adopted for solving the 

kinematic-dynamic free surface boundary conditions are based on Adams-Bashforth-Moulton schemes, 

using an explicit scheme for the kinematic condition, and implicit one for the dynamic condition. Then 
«�� is imposed as a Dirichlet boundary condition. The schemes read as follows: 
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«�� + ΔtWå ⋅ ∇ã
X«�� = 
« − Δt ��ð �
�«�� − Bi«�� − ¹«���  -. : = 0 (5-3) i«�� = i« − ΔtWå ⋅ ∇ãiX« + ΔtW
N« − SÀX -. : = 0 (5-4) 

 

where å is the convective velocity. The convective term is obtained by differentiating along streamlines: 

 Wå ⋅ ∇ã
X«�� = |å|«��0v
«��  
(5-5) Wå ⋅ ∇ãiX« = |å|«0vi«  

 

where 0v denotes the derivative along the streamline. This streamline derivative is estimated using a two 

points upstream and one point downstream differential operator. Figure 5 shows the tracing of the 

streamline at node C. The left (-1) and forward left (-2) points are the upstream points, while the right 

(1) point corresponds to the downstream point. The values of the scattered velocity potential 
 and 

scattered free surface elevation i at -1, -2 and 1 points are obtained by linear interpolation between the 

nodes of the edges where they lie on. The stream line differential operator reads as: 

 0v
� = ñ�
� + ñ�
� + ñ��
�� + ñ��
�� 
(5-6) 0vi� = ñ�i� + ñ�i� + ñ��i�� + ñ��i�� 

 

where 
�, 
��, 
�� are interpolated between W
�ò, 
�æX,  W
��ò, 
��æX, and W
��ò, 
��æX respectively. 

In matrix form: 

 

Iíî + ΔtÔ# ��ßPó«�� = íî �ó« − Δt ��ð S
�«�� − Bô«�� − R«����  -. : = 0 (5-7) 

íî ô«�� = Iíî − ΔtÔ# �P ô« + ΔtWóN« − aÀX -. : = 0 (5-8) 

 

Where Ô#  is the streamline convective matrix, and íî is the identity matrix. The stencils are obtained 

using Taylor series expansion to impose a second order finite difference scheme along the streamline. 

That is to say, solving the following system of equations: 
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ñ� + ñ� + ñ�� + ñ�� = 0 ñ�Δ4� − ñ��Δ4�� − ñ��Δ4�� = 1 

ñ� Δ4��2 + ñ�� Δ4���2 + ñ�� Δ4���2 = 0 

ñ� Δ4�D6 − ñ�� Δ4��D6 − ñ�� Δ4��D6 = 0 

(5-9) 

 

 
Figure 5: Streamline discretization 

 

The associated matrix form to the finite element formulation for the governing equations is: 

 �∗# � = �¡¢ + �� + �  (5-10) 

 

where �∗#  is the standard laplacian matrix modified to account for the left hand side of Eq.(5-7), �¡¢  is a 

vector accounting for the right hand side of Eq. (5-7), and ��  and �   are the vectors resulting of 

integrating the corresponding boundary condition terms.  

5.3 Streamline Upwind Petrov-Galerkin (SUPG) formulation 
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Alternatively, a SUPG stabilization scheme is also available in SeaFEM for the integration of the free 

surface boundary conditions. Both, the dynamic and kinematic boundary conditions can be seen as a 

convection-reaction equation: 

 ∂õ∂t + å ⋅ ∇ãõ + ³ = 0 (5-11) 

 

Weak formulation: 

 ö ÷ �øùø¿ + å ⋅ ∇ãõ + ³� ¨ú© = 0  (5-12) 

  

Discrete Galerkin method: 

 ∀- ö û�  �û� øùüø¿ + å ⋅ ∇ãû�õ� + û�³�«�ý� ¨ú© = 0  (5-13) 

  

Time marching scheme: 

 

∀- ö û�û�© ùüþ�f�ùüþ�g ¨ú +  ö û�Wç«�� · ∇ãû�X� õ�«�ý¨ú  

+ ö û�û�³�«�ý© ¨ú = 0  

(5-14) 

 

SUPG Stabilization: 

 

∀- ∑ �ö û�û��� ùüþ�f�ùüþ�g ¨ú +  ö û�IWå�X«�ý · ��û�P�� õ�«�ý¨ú 
+ ö û�û� ´�üþ�	ð + Bi�«�ý + ¹�«�ýµ©
 ¨ú � +�

 ∑ ��Wå�
 Xþ�	��Wå�
 Xþ�	�� ��ö ��û�û�¨ú�� � ùüþ�f�ùüþ�g + �ö ��û�IWå�X«�à · ��û�P¨ú�� �õ�«�ý
+ �ö ��û�û�¨ú�� �³�«�ý � = 0  

(5-15) 
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where IU�
PÀ��
  is the average convective velocity within the element, and  WU�XÀ�� = ∑ N�
U�
À���
 . 

Reordering terms: 

 

∀-  ∑ �ö û��û���� ¨ú + ��Iå�
 Pþ�	
��Iå�
 Pþ�	�ö ∇�û��û���� ¨ú��,��,�� õ�«��  

− ∑ �ö û��û���� ¨ú + ��Iå�
 Pþ�	
��Iå�
 Pþ�	� ö ��û��û���� ¨ú��,��,�� õ�« =   

−Δ1 ∑ �ö û�Iû��å��«�ý · ��û��P�� ¨ú + ��Iå�
 Pþ�	
��Iå�
 Pþ�	�ö ��û��Iû��å��«�ý · ��û��P�� ¨ú��,��,�� õ�«�ý  

−�1 ∑ �ö û��û���� ¨ú + ��Iå�
 Pþ�	
��Iå�
 Pþ�	�ö ��û��û���� ¨ú�³�«�ý�,��,��   

(5-16) 

 

In matrix form: 

 I #̧ + #̧ ����«�ý P�À�� + �tI #«�ý +  #����«�ý PO�À�� = I #̧ + #̧ ����«�� P�À − �tI #«�ý +  #����«�ý PW1 − OX�À + I #̧ + #̧ ����«�� P!«�ý  
(5-17) 

 

where: 

 #̧ = ∑ ö û��û���� ¨ú�,��,��              
#̧ ����À�ý = ∑ ���Iå�
 Pþ�	

��Iå�
 Pþ�	�ö ∇�û��û���� ¨ú��,��,��   

 #À�ý = ∑ ö û�Iû��å��«�ý · ��û��P���,��,��             
 #����À�ý = ∑ ���Iå�
 Pþ�	

��Iå�
 Pþ�	� ö ��û��Iû��å��«�ý · ��û��P�� ¨ú��,��,��   

(5-18) 

 

Following the same procedure as for the convection-reaction equation, the dynamic boundary condition 

becomes: 
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I #̧ + #̧ ����«�ý PóÀ�� + �tI #«�ý +  #����«�ý POóÀ�� = 

I #̧ + #̧ ����«�� PóÀ − �tI #«�ý +  #����«�ý PW1 − OXóÀ − I #̧ + #̧ ����«�� P ��ð S«�ý + Bô«�ý + R«�ý�  
(5-19) 

 

And following the same procedure as for the convection-reaction equation, the kinematic boundary 

condition becomes: 

 I #̧ + #̧ ����«�ý P"À�� + �tI #«�ý +  #����«�ý PO"À�� = I #̧ + #̧ ����«�ý P"À − �tI #«�ý +  #����«�ý PW1 − OX"À 

+I #̧ + #̧ ����«�ý P ´1A óN«�ý − #«�ýµ 

(5-20) 

 

The associated matrix form to the finite element formulation for the governing equations is: 

 �∗# � = �¡¢ + �� + �  (5-21) 

 

where �∗#  is the standard laplacian matrix modified to account for the left hand side of Eq. (5-19), �¡¢  is 

a vector accounting for the right hand side of Eq. (5-19), and ��  and �   are the vectors resulting of 

integrating the corresponding boundary condition terms. 

All the numerical models for the wave diffraction-radiation problem implemented in SeaFEM are based 

on [1] and [20]. 
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6. HYDRODYNAMIC LOADS ON BODIES   (PART II) 

6.1 Glossary 

� Velocity potential ξ Free surface elevation 
 Difraction-radiation velocity potential 
d� Double body diffraction-radiation velocity potential �� First order body displacements !� First order body rotations Ä� First order hydrodynamic forces Á# c Hydrostatic restoring matrix ¸� First order hydrodynamic moments ���  Initial body surface normal vector at point P ��� First order pressure at point P ���  First order body surface displacement at point P S��  Initial body boundary Sx$�  Initial transom stern boundary å Convective velocity å% Body translational velocity tÂ  Coordinates of body center of gravity 

6.2 First order loads 

Hydrodynamic forces and moments are obtained from direct pressure integration over the body surface. 

The body gravity center will be used as a reference for body movements and moments acting on it. 

Ä� = ¥ ������ÅÆ¢ ¨} − ¥ ������Å&'¢ ¨} = Äc� + Äc� + Äd� + Äx$�  (6-1) 

¸� = ¥ ���ItÂ−t�P × ���ÅÆ¢ ¨} − ¥ ���ItÂ−t�P × ���Å&'¢ ¨} = ¸c� + ¸c� + ¸d� + ¸x$�  (6-2) 

 

where sub-index H stands for hydrostatic loads, D stands for dynamic loads, and TS for transom stern. 
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6.3 Hydrostatic loads 

The hydrostatic loads are split as follows: 

Äc� = − ¥ AB:���ÅÆ¢ ¨} = AB∀ 
(6-3) 

¸c� = − ¥ AB:Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} (6-4) 

Äc� = − ¥ ABh�N� ���ÅÆ¢ ¨} = Á# c�� 
(6-5) 

¸c� = − ¥ ABh�N� Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} = Á# c!� 
(6-6) 

where ∀ is the body displacement, and  Ç# c is the hydrostatic restoring matrix (defined in section 3.2). 

6.4 Dynamic loads 

The dynamic loads are computed as: 

Äd� = − ¥ A ´0� 01 + å ⋅ ∇ã� + ³µ ���ÅÆ¢ ¨} 
(6-7) 

¸d� = − ¥ A ´0� 01 + å ⋅ ∇ã� + ³µ Ã�S�TTTTTTTTTT⃗ × ���ÅÆ¢ ¨} 
(6-8) 

where å and Q depends on the flow approximation used (Table 2).  

 

Table 2: values of å and Q (see section 4.5) 

Flow type å ³ 

Kelvin å% 0 

Double body å% + ∇ã
d� − 12 ∇ã
d�∇ã
d� 

Non-linear å% + ∇ã
 − 12 ∇ã
 ⋅ ∇ã
 

6.5 Transom stern added resistance 

If a transom stern is defined, no hydrodynamic pressure will exist on the transom surface. However, 

since hydrostatic and dynamic loads are calculated integrating on the initial wet surface of the body,  S��  
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and the transom stern surface is included S(Å� ⊂ S*� , imposing a zero pressure on the transom stern is 

equivalent to adding the corresponding negative pressure. Then, integrating over  S(Å� , the loads obtained 

can be seen as added resistance due to the lack of hydrostatic and dynamic pressure. 

 Äx$� = − ¥ ������Å&'¢ ¨} (6-9) 

¸x$� = − ¥ ���ItÂ−t�P × ���Å&'¢ ¨} (6-10) 
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7. BODY DYNAMICS 

7.1 Glossary 

M Body mass +̿ Body instantaneous inertia matrix respect to local frame #̧  Multibody mass matrix Á#  Hydrostatic restoring matrix of the multi-body system , Vector containing the six degrees movements of the multi-body system �\  Vector containing the six degrees velocities of the multi-body system �-   Vector containing the six degrees accelerations of the multi-body system × Body displacement vector . Body rotation vector / Vector containing external loads on the multi-body system 0] Vector containing external forces on the i
th

 body 1] Vector containing external moments on the i
th

 body ( Alpha modified Bossak-Newmark scheme coefficient 2 Bossak-Newmark beta coefficient w Bossak-Newmark gamma coefficient 3# Jacobian matrix of body links 

7.2 Dynamic equations (small rotations) 

Integrating the pressure over the bodies’ surface, the resulting forces and moments are obtained. On the 

other hand, the body dynamics is given by the equation of motion: 

 #̧  �- + Á#� = Ä (7-1) 

 

SeaFEM uses an implicit alpha modified Bossak-Newmark´s algorithm [2]: 

 W1 − (X,gg«�� + (,gg« = #̧ ��I/«�� − '#,«��P (7-2) ,g«�� = ,g« + ∆15W1 − wX,gg«�� + w,gg« 6 (7-3) 
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,«�� = ,« + ∆1,g« + ∆1�2 5W1 − 22X,gg«�� + 22,gg« 6 (7-4) 

 

In the above integration algorithm, α is the parameter defining the numerical damping added in the 

integration. This damping creates a desirable stabilizing effect in the body dynamics integration. α is 

usually set to between 0 (no damping) and -0.1. In SeaFEM, γ and  β are calculated as γ= 0.5- α  and 

β=0.5γ +0.025α. 

7.3 Dynamic equations (large rotations) 

In case large rotations are expected, the Euler equations are used to integrate the body dynamics. Each 

body accelerations are solved respect to a local frame of reference attached to the gravity center of the 

body, and with axis parallel to the global frame of reference.  

 

 

Figure 6: Global and local frame of reference used in SeaFEM 

 

The dynamic equations for each body are the Newton´s and Euler´s equations: M8×- � = 08 (7-5) +̿ .-� = 18 − �\ 8 ∧ I+̿8 · �\ �P (7-6) 

 

where +̿� is the instantaneous inertia tensor of body i respect to the local frame. The Euler equations are 

derived in a rotating reference frame fixed to the body, and therefore, the inertia has to be updated. 
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It is important to remark that, in equation (7-6), / and : must be evaluated in the local reference frame.   

7.4 Body links 

7.4.1 Lagrange multipliers 

Let a multibody system be defined by the dynamics equations: 

 :#,- g = /g (7-7) 

 

Let the body-links to be defined by nonlinear equations of the following type: 

 ;8W,gX = ;8W<�g,<�g , … ,<Àg X = =8 (7-8) 

 

where 4>g is the vector representing the position of all and each body of the multibody system, and =8 is a 

constant value. The latter will be brought into the system dynamics via Lagrange multipliers. To do so, 

body-links must be linearized. The following linearization is used: 

 

;8I<�g,�,<�g,�, … ,<Àg,�P + k �∂;8∂4>�
g,�

> I<>g,��� − <>g,�P = =8 (7-9) 

 

in vector form: 

 W∇;8Xg,� · ,g,��� = =8 − ;8W,g,�X + W∇;8Xg,� · ,g,� (7-10) 

 

where ? is the k-th iteration of the iterative resolution of the dynamic system. The previous linearization 

ensures that as ‖,g,� − ,g,���‖ → 0 ⇒ ;8W,g,���X → =8 and the bodylink is fulfilled. 

We use an alpha Bossak-Newmark scheme as a temporal integrator scheme for the dynamic equations. 

Positions 4>g�∆g,���
depend linearly on accelerations 4->g�∆g,���

as follows: 
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,g,��� = ,g�∆g + ∆t,\ g�∆g + ∆t�2 �W1 − 2βX,- g�∆g + 2β,- g,���� (7-11) 

 

Introducing the Newmark scheme into the linearized bodylink: 

 

W∇;�Xg,� ⋅ ´,g�∆g + ∆1,\ g�∆g + ∆1� �W0.5 − 2X,- g,��� + 2,- g�∆g�µ
= =� − ;�W,g,�X + W∇;�Xg,� ⋅ ,g,� 

(7-12) 

 

The previous equation can be written as: 

 

W∇;�Xg,� ⋅ ,- g,��� = 1∆1�2 W=� − ;�W,g,�X + W∇;�Xg,� ⋅ ,g,�X − 

−W∇;�Xg,� ⋅ �,g�∆g∆1�2 + ,\ g�∆g∆12 + W0.5 − 2X2 ,- g�∆g� 

(7-13) 

 

Or after reordering terms: 

 

W∇;�Xg,� ⋅ ,- g,��� = 1∆1�2 �=� − ;�W,g,�X�+W∇;�Xg,� ⋅ ,- g,� (7-14) 

 

The set of linearized bodylinks can be written as: 

 

k a��g,�<-�g,���� = |�g,�
 (7-15) 

 

where 3#g,� = Ca Dg,�E is the Jacobian matrix 

 

a��g,� = �0;�04��g,�
 (7-16) 

 

and Fg,� = 5|�g,�6: 
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|�g,� = 1∆1�2 G=� − ;�W,g,�X + k a��g,�<�g,�� H − k a��g,� �<�g�∆g∆1�2 + <\�g�∆g∆12 + W0.5 − 2X2 <-�g�∆g��  (7-17) 

 

or 

 

|�g,� = 1∆1�2 5=� − ;�W×g,�X6+ k a��g,�<-�g,��  (7-18) 

 

Then, the imposition of nonlinear bodylinks via Lagrange multipliers can be carried out as follows: 

 

G :# I3# xPg,�
3#g,� 0   H I×- g,���Jg,���K = I/g,�Fg,�K (7-19) 

 

Finally, reaction forces are obtained from: 

 Lg,� = −IM#xPg,�Jg,� (7-20) 

 

and since matrix contains the instantaneous normal direction to the trajectory imposed by the body-links, 

reaction forces act perpendicular to the imposed trajectories. 

7.4.2 Body links with Alpha Bossak-Newmark integration 

The alpha Bossak-Newmark scheme uses the following scheme to obtain the acceleration at time t: 

 W1 − αX:#,- g + α:#,- g��g = /g + Lg (7-21) 

 

where Lg = −3#xJg are the reaction forces due to bodylinks. Then: 

 :# W1 − αX×- g + 3#xJg = /g − α:×- g��g (7-22) 
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Introducing the body link constraints 3×- g = FO, the multibody dynamic system reads as: 

 

I:# 3#P3# ` K IW1 − αX×- gJg K = I/O − α:# ×- g��gW1 − αXFO K (7-23) 

 

7.5 Body dynamics iterative solver 

The dynamic solver is implemented in SeaFEM by means of three nested loops. A relaxation algorithm 

based on the Aitken´s method [6] is used to speed up convergence within each loop. 

7.5.1 Time marching loop 

The time marching loop is the outer loop marching in time. Information from the previous time step is 

used as initial guests of the iterative procedure.  

7.5.2 Solver loop 

The solver loop is where the hydrodynamic loads are calculated. In each iteration within this loop, the 

linear system corresponding to the wave diffraction-radiation problem is to be solved. Iterations is 

carried out until convergence of hydrodynamic loads along with body kinematics is reached.  

Should non-linear mooring lines be defined, stiffness linearization will be carried out for each iteration, 

and the updated stiffness matrix will be passed on to the body dynamics loop.  

7.5.3 Body dynamics loop 

The body dynamics loop is the inner loop. Within this loop, wave diffraction and radiation loads remain 

unchanged, hydrostatic forces are updated based on body position, and the rest of loads will be updated 

in each iteration. 

 



 

 

Figure 7: Scheme of the dynamic integration solver of SeaFEM
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Scheme of the dynamic integration solver of SeaFEM 

 

 

 



8. STATISTICAL DESCRIPTION OF WAVES 

8.1 Glossary 

ºW&, (X Two dimensional wave energy density distribution % Wave amplitude Q Wave period & Wave angular frequency ? Wave number ( Wave direction i Wave elevation J Wave phase ) Water depth )$ Significant wave height QR Mean wave period Q� is the peak wave period S� Zero order moment of wave energy distribution S� First order moment of wave energy distribution 

8.2 Spectrum discretization 

Let be ºW&, (X an energy density spectrum describing a sea state in terms of the wave frequency and 

direction of propagation. The discretization procedure to obtain a stationary and ergodic realization 

based on monochromatic waves is as follows: 

Let be min the minimum frequency to be considered, axm the maximum frequency to be considered, 

min the lower direction of propagation to be considered, axm  the larger direction of propagation to be 

considered, wN  the number of wave frequencies, and N the number of wave directions to be 

considered. Then, the frequency and direction discretization sizes are given by: 

 

∆& = W&RòK − &R�«XûT  (8-1) 
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Δ( = W(RòK − (R�«XWûà − 1X  

 

then, the wave elevation is given by: 

 

η =  k k %�� cosI?��|9}I(�P4 + ?��}-.I(�P − Ω��1 + J��PUV
���

UW
���  (8-2) 

 

where Ω��  is the wave angular velocity and a random variable with uniform distribution in within 

5&� − �X� , &� + �X� 6, &� = &R�« + W- − 1/2XΔ&, (� = (R�« + WY − 1XΔ(, 
ij is a random variable with 

uniform distribution in  0,2 , t  represents time, and ,x y  are the horizontal Cartesian coordinates. The 

wave number is obtained from the dispersion relationship: 

 Ω��� = B?��tanh I?��)P (8-3) 

 

and the wave amplitude is calculated from the wave energy distribution as: 

 

A�� = Ë2Δ&Δ( ºI&�, (�P 116 )$�∑ ì2Δ&Δ( ºW&[, (RX[,R   (8-4) 

 

where 04SH m is the significant wave height, and 0

0

( , )m S d d





   




   is zero order moment of 

the spectrum wave energy. 

8.3 Convergence 

Convergence of the discretized spectrum will happen as min 0  , max   , 0  , min 0  , 

max 2  , and 0  . The rate of convergence with   and   is that of the rectangle rule of 

numerical integration. 
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8.4 Spectral moments 

8.4.1 Zero order moment 

The spectral energy of a wave spectrum is given by: S� = ö ö ºW&, (Xu�uê� ¨&¨( = ��\ AB )$� . Then, the 

discrete spectrum is scaled such that the spectral moment 0m  is conserved. Therefore: 

 

2 2

,

1 1

2 16
ij S

i j

A H  (8-5) 

8.4.2 First order moment 

The first order moment of the discrete spectrum is: 

 

S�∗ = k ºI&�, (�PΩ�,�Δ&Δα�,� = k ºI&�, (�Pω�,�Δ&Δα�,� + k ºI&�, (�Pϵ�,�Δ&Δα�,�  (8-6) 

 

where 
ij is uniform distributed between  /2, /2   , ∑ ºI&�, (�Pω�,�Δ&Δα�,�  is a deterministic 

component of the first moment, and ∑ ºI&�, (�Pϵ�,�Δ&Δα�,�  is a random component. Assuming that 

max  , min 0  , min 0  , max 2  , the deterministic component converges to: 

 

lim�X→��à→� k ºI&�, (�Pω�,�Δ&Δα�,� = ¥ ¥ &ºW&, (Xu
�u

ê
� ¨&¨( (8-7) 

On the other hand, for large values of N
, the probabilistic component is a random variable with normal 

distribution. The mean μ  and variance σ� of this distribution are: 

 

 

b = k ºI&�, (�PΔ&Δα¥ & 1Δ& ¨&�X/�
��X/��,�  (8-8) 
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ú� =  k ºI&�, (�PΔ&Δ( ¥ &��X/�
��X/�

1Δ&�,� ¨& = k ºI&�, (�PΔ&Δ(�,�
Δ&�12  (8-9) 

 

The probabilistic component converges to a random variable with zero mean and zero variance.  

8.5 Wave spectrums 

8.5.1 Pearson Moskowitz 

This is probably the simplest idealized spectrum, obtained by assuming a fully developed sea state, 

generated by wind blowing steadily for a long time over a large area [3]. The resulting spectrum was [4]: 

 ºWQX = )��QRW0.11/2cXWQR/QX�de��.ÊÊWxR/xX°f  (8-10) 

 

where QR = 2cS�/S�, with S� and S� the zero and first moments of the wave spectrum. 

8.5.2 Jonswap 

The JONSWAP spectrum was established during a joint research project, the "JOint North Sea WAve 

Project" [5]. This is a peak-enhanced Pierson-Moskowitz spectrum given on the form: 

 

ºWQX = � 532π)�� TdT�Ê� · εj · e��.�d´(k (l µ°f · I1 − 0.287log WϵXP 

w = e�CW�.�dop(k ��X/Wq√�XE�  

(8-11) 

 

where & = 2c/Q, ú = 0.07 for & ≤ 6.28/Q�, ú = 0.09 for & > 6.28/Q�, Q is the wave period; )� is 

the significant wave height, T� is the peak wave period and F is the peakedness parameter. 

An alternative definition of the JONSWAP spectrum is given by [4]: 

 

ºW&X = �155)��TuÊωd � · 3.3j · e�oÊÊ(v°f p°f
 (8-12) 
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w = e�CW�.�o�p(v°fX/Wq√�XE�  

 

where ú = 0.07 for & ≤ 5.24/QR, ú = 0.09 for & > 5.24/QR, QR = 2cS�/S�. 

8.5.3 White noise 

The white noise spectrum corresponds to a uniform energy distribution within a wave frequency 

interval, having zero energy outside the prescribed interval. This type of spectrum is used in SeaFEM to 

carry out Response amplitude operators (RAOs) analyses (see section 11). 



9. MOORING 

9.1  Glossary 

Elastic catenary formulation 4, : Horizontal and vertical positions measured from the lower cable point } Catenary arc length Qw Horizontal component of the cable tension & Catenary weight per unit length in water (i.e. minus buoyancy) Qx Vertical component of the cable tension y Total length of the catenary )z  Horizontal component of the effective tension in the mooring line at the fairlead {z Vertical component of the effective tension in the mooring line at the fairlead )z  Horizontal component of the effective tension in the mooring line at the anchor {z Vertical component of the effective tension in the mooring line at the anchor | Young’s modulus of the mooring line % Cross section area of the mooring segment 4z , :z  Horizontal and vertical coordinates of the fairlead point relative to the anchor �� Static friction coefficient y� Length of the cable’s portion resting at the seabed 

  

Dynamic cables formulation × Vector of nodal translational degrees of freedom / Vector of external loads :#  Inertia matrix :#} Added mass matrix �� Pretension vector in the initial configuration L Vector of nodal internal forces of the cable  # Damping matrix Ç# Material stiffness matrix Ç# Ø Geometric stiffness matrix ~̿� Elemental material stiffness matrix 
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~̿Ø�  Elemental geometric stiffness matrix e Truss element strain V� Element volume s Axial stress E Axial elastic modulus 1#� Elemental inertia matrix 1#�� Elemental added mass matrix A Section area of the cable Cu Added mass coefficient ζ8 Damping ratio corresponding to the natural frequency of the structure ω8 Natural frequency of the structure /��  Weight force /ã� Buoyancy force /�� Drag force related to currents /�� Force due to the seabed interaction /�� Drag force due to waves ρ� Cable density ρ� Water density D Characteristic diameter of the element C�� Normal drag coefficient C�� Tangential drag coefficient ç�� Velocity relative to the element dt Time step α Parameter related with Bossak-Newmark implicit algorithm  γ, β Parameters related to Newmark time integration scheme 

9.2 Mooring system modelling 

SeaFEM can handle complex mooring systems made up of various mooring lines attached to the floating 

structure. Each mooring line can be in turn composed of various segments each one resembling a chain, 

a steel cable or even a synthetic fiber. Forces resulting from the action of buoys and sinkers acting at the 

junctions between mooring line segments can also be considered. Hence, SeaFEM can deal with a wide 

variety of multi-segmented mooring line systems. 

Cable tensions depend on the buoyancy and lateral displacements of the floating structure, the cable 

weight in water, the elasticity in the cable and the geometrical layout of the mooring system. Hence, as 
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the floating structure moves in response to unsteady environmental loadings, the mooring restraining 

forces change with the changing cable tension. This means that the mooring system has an effective 

compliance whose response is in general non-linear. Within SeaFEM, mooring inertia and damping are 

ignored, but the non-linear response is accounted for in the mooring system dynamics. 

Mooring systems within SeaFEM are solved using a quasi-static approach in the sense that at any step of 

the calculation, and once the floating body displacements are known, the mooring system solver 

calculates the tensions and the geometrical configuration of each mooring line segment assuming that 

each cable is in static equilibrium at that instant. The mooring loads resulting from the calculation are 

added to the total load acting on the floating body, and the resulting dynamic equations of motion of the 

structure are solved again until convergence. At each time step the implicit non-linear system of 

equations describing the mooring system is solved using a classical Newton-Raphson scheme. 

The formulation implemented within SeaFEM for dealing with catenary based mooring systems is 

outlined in what follows. Additionally, cables behaving as springs (both in tension and/or compression) 

can also be modeled. 

9.2.1 Catenary equations 

In a local coordinate system with its origin located at the lower cable point, the mooring equations for 

the catenary read as follows: 

 

: =  ´Qw& µ |9}ℎ ´&Qw 4 + (µ + 2 (9-1) 

} = ´Qw& µ }-.ℎ ´&Qw 4 + (µ + w (9-2) 

 

where z is the vertical position, s is the catenary arc length, & is the catenary weight per unit length in 

water, and  Qw is the horizontal component of the cable tension which is constant everywhere. If the 

conditions :W4 = 0X = 0 and }W4 = 0X = 0 are applied, the equations result to be: 

 

: =  ´Qw& µ I|9}ℎ ´&Qw 4 + (µ − cosh W(XK (9-3) 
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} = ´Qw& µ I}-.ℎ ´&Qw 4 + (µ − sinh W(XK (9-4) 

 

The action of any part of the line upon its neighbor is purely tangential, and the tangential direction can 

be written as: 

 

1�.O = ¨:¨4 = sinh ´&Qw 4 + (µ (9-5) 

 

The equilibrium equations can be written as: 

 Q�wT« · |9}O�wT« = Q�� · |9}O�� = Qw Q�� · }-.O�� − Q�wT« · }-.O�wT« = & · y 
(9-6) 

 

From the horizontal component of the tension at any point of the catenary, it is possible to write the 

modulus of the cable tension at any point of the catenary as: 

 

Q = Qw|9}O = Qw · �ì1 + 1�.�O� = Qw · |9}ℎ ´&Qw 4 + (µ (9-7) 

 

Hence, the vertical component of tension at any point of the catenary can be written as: 

 

Qx = Q · }-.O = Qw · }-.ℎ ´&Qw 4 + (µ (9-8) 

 

In particular, at the upper and bottom vertex of the catenary above equation reads, respectively: 

 

Qx �� = Qw · }-.ℎ ´&Qw Ì + (µ (9-9) 

Qx �wT« = Qw · }-.ℎW(X (9-10) 

 

and the vertical equilibrium equation will result in: 
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y = ´Qw& µ ´}-.ℎ ´&Qw Ì + (µ − }-.ℎ W(Xµ = }W4 = ÌX (9-11) 

 

For a given length of the catenary (y) and for given horizontal and vertical distances (Ì, ℎ) between the 

initial and end points of the catenary, it is possible to solve the equations by using a classical Newton-

Raphson iterative process.  

If the catenary has a seabed contact in its lower point, the following condition must be added 

 �¨:¨4�K�� = 0 (9-12) 

 

and the catenary equations result in: 

 

: =  ´Qw& µ I|9}ℎ ´&Qw 4µ − 1K 
} = ´Qw& µ I}-.ℎ ´&Qw 4µK (9-13) 

 

9.2.2 Elastic catenary formulation 

The elastic catenary formulation used within SeaFEM is similar to that presented in [6]. Each mooring 

line is analyzed in a local coordinate system that originates at the anchor. The local z-axis of this 

coordinate system is vertical and the local x-axis is directed horizontally from the anchor to the 

instantaneous position of the fairlead. When the mooring system module is called for a given structure 

displacement, SeaFEM first transforms each fairlead position from the global frame to this local system 

to determine its location relative to the anchor, xF and zF. 
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Figure 8: Catenary system of reference. 

 

In the local coordinate system, the analytical formulation is given in terms of two nonlinear equations in 

two unknowns—the unknowns are the horizontal and vertical components of the effective tension in the 

mooring line at the fairlead, HF and VF, respectively.  

 

:zW)z,{zX = )z& ��1 + ´{z)zµ� − �1 + ´{z − &y)z µ�� + 1|% �{zy − &y�2 � (9-14) 

 

The analytical formulation of two equations in two unknowns is different when a portion of the mooring 

line adjacent to the anchor rests on the seabed: 

 

4zW)z ,{zX = y − {z& + )z& Ì. �{z)z + �1 + ´{z)zµ�� + )zy|%
+ ��&2|% G− ´y − {z& µ� + ´y − {z& − )z��&µ Ñ%< ´y − {z& − )z��& , 0µH 

:zW)z,{zX = )z& ��1 + ´{z)zµ� − �1 + ´{z − &y�)z µ�� + 1|% �{zy� − &y��2 � 

y� = y − {z& , y� = y − y� 

(9-15) 

x 

z 

HA    

    VF 
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VA     

Anchor 

Fairlead 
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The last term on the right-hand side of the 4z equation above, which involves CB, corresponds to the 

stretched portion of the mooring line resting on the seabed that is affected by static friction. The seabed 

static friction was modeled simply as a drag force per unit length. The Ñ%< function is needed to handle 

cases with and without tension at the anchor. Specifically, the resultant is zero when the anchor tension 

is positive; that is, the seabed friction is too weak to overcome the horizontal tension in the mooring line. 

Conversely, the resultant of the Ñ%< function is nonzero when the anchor tension is zero. This happens 

when a section of cable lying on the seabed is long enough to ensure that the seabed friction entirely 

overcomes the horizontal tension in the mooring line. These equations consider that slack catenary is 

always tangent to the seabed at the point of touchdown. 

The mooring system module uses a Newton-Raphson iteration scheme to solve nonlinear for the fairlead 

effective tension ()z and {z), given the line properties (y, &, |%, and ��) and the fairlead position 

relative to the anchor (4z and :z). The mooring system module uses the values of HF and VF from the 

previous time step as the initial guess in the next iteration of the Newton-Raphson scheme. As the model 

is being initialized, the following starting values, )z� and {z�, are used [7]: 

 

)z� = �&4z2�� � {z� = &2 I :z1�.ℎW��X + yK (9-16) 

 

where the dimensionless catenary parameter, λ0, depends on the initial configuration of the mooring line: 

 

�� =
⎩⎪⎪
⎨⎪
⎪⎧ 1000000     ;9h  4z = 00.2            ;9h Ë4z� + :z� ≥ y
�3 �y� − :z�4z� − 1�         91ℎehñ-}e

� (9-17) 

 

Once the effective tension at the fairlead has been found, determining the horizontal and vertical 

components of the effective tension in the mooring line at the anchor, )� and {�, respectively, is simple. 

From a balance of external forces on a mooring line, one can easily verify that 
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 )� = )z {� = {z − &y 
(9-18) 

 

When no portion of the line rests on the seabed, and 

 )� = Ñ%<W)z − ��&y�, 0X {� = 0 

y� = y − {z&  

(9-19) 

 

The mooring system module solves the configuration of, and effective tensions within, the mooring line. 

When no portion of the mooring line rests on the seabed, the equations for the horizontal and vertical 

distances between the anchor and a given point on the line, x and z, and the equation for the effective 

tension in the line at that point, Te, are as follows: 

 

4W}X = )z& �Ì. �{� + &})z + �1 + ´{� + &})z µ�� − Ì. �{�)z + �1 + ´{�)zµ��� + )z}|%  

:W}X = )z& ��1 + ´{� + &})z µ� − �1 + ´{�)zµ�� + 1|% �{�} + &}�2 � 

QW}X = Ë)z� + W{� + &}X� 

(9-20) 

 

where s is the unstretched arc distance along the mooring line from the anchor to the given point.  

The equations with seabed interaction are: 
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4W}X =  

⎩⎪⎪
⎪⎪⎪
⎨
⎪⎪⎪
⎪⎪⎧ }    ;9h 0 ≤ } ≤ y� − )z��&

} + ��&2|% ⎣⎢⎢
⎡ }� − 2 ´y� − )z��&µ } +
´y� − )z��&µS�4 ´y� − )z��& , 0µ⎦⎥⎥

⎤     ;9h y� − )z��& ≤ } ≤ y�

y� + )z& Ì. �&W} − y�X)z + �1 + �&W} − y�X)z ��� + )zy|%
+ ��&2|% I−Wy�X� + ´y� − )z��&µS�4 ´y� − )z��& , 0µK     ;9h y� ≤ } ≤ y

� 

 

:W}X = ⎩⎨
⎧ 0    ;9h 0 ≤ } ≤ y�)z& ��1 + �&W} − y�X)z �� − 1� + &W} − y�X�2|%     ;9h y� ≤ } ≤ y� 

QW}X = � Ñ%<W)z + ��&W} − y�X, 0XË)z� + I&W} − y�XP�     ;9h y� ≤ } ≤ y� 

(9-21) 

 

The final calculation is a computation of the total load on the system from the contribution of all 

mooring lines. This mooring system-restoring load is found by first transforming each fairlead tension 

from its local mooring line coordinate system to the global frame, then summing up the tensions from all 

lines. 

9.2.3 Dynamic cable formulation 

SeaFEM includes a finite element model (FEM) for solving mooring line dynamics. For this purpose, 

the line is divided into a series of straight segments modeled by nonlinear truss elements, with three 

translational degrees of freedom per node. Lagrangian formulation is used to describe the dynamics of 

the mooring line.  
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Figure 9: Scheme of the FEM cable model. 

 

Applying FEM formulation to this nonlinear elastodynamics problem, the equations of the dynamics of 

the line can be written as follows: 

 I:# ¿��¿ + :#}¿��¿P×- + £î¿��¿×\ + �� + L¿��¿ = /¿��¿ (9-22) 

 

where x is the vector of nodal translational degrees of freedom, / the vector of external loads, :#  the 

inertia matrix of the line, :#} the added mass matrix, �� is the pretension vector in the initial 

configuration, and L, the vector of internal forces of the cable. Damping effects of mooring cable can be 

inserted through a Rayleigh-type damping matrix  #. 

Considering the standard linearization of the internal forces, above equations can be expressed as: 

 I:# ¿��¿ + :#}¿��¿P×- + £î¿��¿×\ + �� + IÇ# ¿��¿ + Ç# Ø¿��¿P¤× + L¿ = /¿��¿ (9-23) 

 

where Ç# and Ç# Ø are the so called material stiffness matrix and geometric stiffness matrix, respectively 

[7]. The corresponding elemental material stiffness matrix ~̿�, and  geometric stiffness matrix, ~̿Ø� , can 

be obtained in terms of the strain of the truss element, e: 
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~̿� + ~̿Ø� = ∂∂x ´V�s ∂e∂xµ = V�E ∂e∂x ⊗ ∂e∂x + V�s ∂�e∂x� (9-24) 

 

where V� is the volume of the element, s the axial stress and E the axial elastic modulus. The FEM 

allows calculating those matrixes as follows [8] 

 

~̿� = V�E ∂e∂x ⊗ ∂e∂x = ¥ B�§V�EB�ds¨�
�  

~̿Ø� = V�f ∂�e∂x� = ¥ B§̈SB¨ ds¨�
�  

(9-25) 

 

The elemental inertia matrixes are evaluated as: 

 

1#� = ¥ ª#§ρª#ds¨�
�  (9-26) 

 

and the added mass matrix is calculated as 

 

m�� = ρACu ¥ ª#(ª# ds¨�
�  (9-27) 

 

In the above equations, ª# is the general matrix of shape functions [8], A is the section area of the cable, 

and Cu is the added mass coefficient. Finally, the damping matrix is evaluated using the Rayleigh 

formulation: 

 £î = a�Ç# + a�:#  (9-28) 

 

The coefficients a�, a� can be calculated as: 

 

ζ8 = 12 ´a�ω8 + a�ω8µ (9-29) 
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where ζ8 is the damping ratio corresponding to the natural frequency ω8 of the structure. The external 

forces vector is evaluated by assembling the contribution of the different forces  acting on the element: 

 /� = /�� + /ã� + /�� + /�� + /�� (9-30) 

 

where /��  is the weight, /ã� is the buoyancy force, /�� is the drag force related to the currents, /�� is the 

force due to the seabed interaction and /�� is the drag force due to the waves. The weight and buoyancy 

force are calculated as follows 

 

/�� + /ã� = ¥ f�ã� ª# ds,¨�
�  

f�ã� = f� + fã = gwWρ� − ρ�XW1 + eXρ�  

(9-31) 

 

where ρ� is the density of the cable, ρ� is the water density, w weight per meter and e the strain of the 

considered element. On the other hand, the drag force acting on the element, is evaluated as 

 

/�� + /�� = ¥ f��ª# ds,¨�
�  

f�� = ¥ 12 ρC��¨�
� D|U��|U�� ds + ¥ 12 ρC��¨�

� D|U��|U�� ds 

(9-32) 

 

where D is the characteristic diameter of the element, C�� and C�� the normal and tangential drag 

coefficients and U�� is the velocity relative to the element. The seabed interaction is modeled with the 

spring and normal and tangential damping terms given by: 

 

/�� = ¥ fu¬� ª# ds¨�
� + ¥ f�À� ª# ds¨�

� + ¥ f�¿� ª# ds¨�
�  (9-33) 

 

where the vertical forces per unit length, due to the stiffness of the seabed fu¬� , are expressed as 
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fu¬� = ­ f¨wl , if  K�Cz� − Wz�X¿��¿E ≤ f¨wlK�Cz� − Wz�X¿��¿E , if  K�Cz� − Wz�X¿��¿E > f¨wl� (9-34) 

 

where z� is the vertical coordinate of the corresponding node, l is the length of the cable associated to 

the node, and f¨ is a coefficient of the model.  K� is the coefficient of the seabed normal stiffness force 

which has the magnitude: 

 K�  = G�Dl (9-35) 

 

where D is the diameter of the line, and G� is the ground normal stiffness per unit length. The term z� is 

then evaluated as: 

 

z� = z8 + wlG�D (9-36) 

 

The seabed damping forces are applied in the normal and tangential directions. The normal damping 

force is only applied when the penetrating object is travelling into the seabed. It is applied in the seabed 

outwards direction and has a magnitude given by: 

 

f�À� = ¼DÀz\ � , if z\ � < 00 , if z\ � ≥ 0� (9-37) 

 

and DÀ is formulated as a fraction, G�, of the critical damping 

 

DÀ = 2,0 G��G� ´wl�g µ WDl�X (9-38) 

 

Finally, the tangential damping force is again evaluated as a fraction, G°,  of the critical damping, and is 

applied in the direction opposing the tangential component of the velocity of the penetrator: 

 f�¿� = D¿x\ � (9-39) 
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D¿ = 2,0 G��G� ´wl�g µ WDl�X 

 

An implicit time integration scheme based on called Bossak-Newmark method [2] is applied to solve the 

system. It will lead to a system of algebraic equations to be solved in iterative manner: 

 CW1 − αXI:# ¿��¿,8 + :#}¿��¿,8P + dtγ£î¿��¿,8 + dt�βIÇ# ¿��¿,8 + Ç# Ø¿��¿,8PE×- ¿��¿,8��
= dt�βIÇ# ¿��¿,8 + Ç# Ø¿��¿,8P×- ¿��¿,8 + /¿��¿,8 − �� + L¿ − £î¿��¿,85×\ ¿ − dtWγ + 1X×- ¿6− αI:# ¿��¿,8 + :#}¿��¿,8P×- ¿ (9-40) 

 

where dt is time step, i denotes iteration, α is a parameter related with Bossak-Newmark implicit 

method, and γ and β are parameters related to Newmark time integration scheme. Finally, the new 

position and velocity of each node can be evaluated as: 

 

×¿��¿ = ×¿ + dt ×\ ¿ + dt�2 CW1 − 2βX ×- ¿ + 2β ×- ¿��¿E 
×\ ¿��¿ = ×\ ¿ + dtCW1 − γX ×- ¿ + γ ×- ¿��¿E (9-41) 

 

The dynamic cable solver is integrated within SeaFEM dynamic solver. The scheme of the dynamics 

solver is presented in the section 7. In order to accelerate the scheme, the mooring forces are linearized 

within the body dynamics group, by evaluating the stiffness matrix K± of the line. A detailed 

description of the FEM cable model implemented in SeaFEM can be found in [9]. 

 

 

 

  



10. FORCES ON SLENDER ELEMENTS 

10.1  Glossary 

² Unit vector denoting the local orientation of a long slender structural element ³ Relative fluid velocity vector ´ Relative acceleration of the submerged body ´Ó Acceleration vector of any point of the body ´� Fluid acceleration of the incident wave / Force per unit length on a slender cylindrical element /± Inertia force per unit length /µ Lift force per unit length /¶ Drag force per unit length /· Linear drag force per unit length /¸ Friction force per unit length D Characteristic linear dimension (the diameter in the case of a cylinder)  S Cross section area C± Added mass coefficient C¶ Non-linear drag coefficient C· Linear drag coefficient C¸ Friction coefficient Cµ Lift coefficient 

10.2  Forces on slender elements 

When viscous effects may be advanced to have a significant effect on the dynamic behavior of an 

offshore structure, Morison's equation can be used to evaluate wave loads on slender elements of the 

structure [9, 10, 11]. In SeaFEM, force corrections due to viscous effects can be also taken into account 

by using the Morison's equation. For this purpose, an auxiliary framework structure, associated to a 

body must be defined. See the SeaFEM user manual for details on how to define the auxiliary 

framework structure elements using the Tcl interface of SeaFEM. 
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Based on the information provided by the user, SeaFEM evaluates Morison's forces per unit length 

acting on the framework structure. After integration along the different elements, the resultant forces are 

incorporated to the dynamic solver of the rigid body to which the idealized framework structure has 

been associated. It is useful to write the Morison’s equation in a vectorial formulation that automatically 

takes into account the actual orientation of structural elements and force components. 

Considering a segment of a long slender structural element submerged into water its local orientation is 

given by a unit vector 

 ¹ = l] + mº + n~ (10-1) 

 

being l, m, n the directional cosines and (l, j, k) the unit vectors of the global coordinate system. 

Similarly, the relative fluid velocity vector and the relative acceleration vector of the submerged body 

are given by: 

 ³ = v¼] + v½º + v¾~ ´ = ´¿ − ´� = a¼] + a½º + a¾~ 
(10-2) 

 

The relative fluid velocity vector and the relative acceleration vector are evaluated based on the 

undisturbed wave potential equations. 

The force per unit length on a slender cylindrical element may be written as the sum of inertia, drag, 

friction and lift forces: 

 / = /± + /¶ + /· + /¸ + /µ (10-3) 

 

where the inertia force F± is oriented along the acceleration vector component normal to the element 

member, and its magnitude is proportional to the acceleration component. Lift force Fµ is oriented 

normal to the velocity vector and normal to the axis of the element, and its magnitude is proportional the 

velocity squared. Drag force F¶ is proportional to the squared velocity component normal to the element 

and normal to the lift force, while the linear drag force F· is proportional to the velocity component 

normal to the element. Finally, friction force F¸ is aligned along the axis of the element and proportional 
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to the squared velocity components tangential to the element axis. All these are satisfied if the various 

force components are defined as follows: 

 /± = W1 − δÂXW1 + C±XρSW¹× ´¿ × ¹X − ρSC±I¹ × ´� × ¹P 

/¶ = 12C¶ρD|¹ × ³ × ¹|W¹ × ³ × ¹X 

/· = 12C·ρDW¹ × ³ × ¹X 

/¸ = 12C¸ρπD|¹ · ³|W¹ · ³X · ¹ 
/µ = 12CµρD|¹ × ³|W¹× ³X 

(10-4) 

 

where D is a linear dimension (the diameter in the case of a cylinder), S is the cross section area, CM is 

the added mass coefficient, CD is the non-linear drag coefficient, CV is the linear drag coefficient, CF is 

the friction coefficient, CL is the lift coefficient, and δÂ takes the value 1 for virtual elements and 0 

otherwise.  

Remark: The first term in the right hand side of the /± equation, includes the Froude-Kriloff force (i.e. 

undisturbed wave pressure force) and the diffraction inertial force, while the second term represents the 

radiation inertial force. 

Remark: Note that while C±,C¶,C¸,Cµ  are non-dimensional coefficients, C· has dimensions of velocity.  

As stated above, Eqs. (10-1) - (10-4) can estimate the different components of the force per unit length 

on a long (slender) structural element. Therefore, they can be integrated along the element axis, to obtain 

the additional forces an moments acting on the centre of gravity of the associated body. 

  



11. RESPONSE AMPLITUDE OPERATORS 

(RAOS) 

11.1  Glossary 

N�
 Number of waves involved in the white noise spectrum for RAOs analysis Tu8À Minimum period for RAOs analysis Tu�¼ Maximum period for RAOs analysis ∆f Frequency increment of the analysis fÀ Discrete frequencies of the analysis ∆t Time step T Total calculation time 

11.2  Response amplitude operators (RAOs) 

RAOs are transfer functions of the relation between the wave exciting forces and ship movements, used 

to determine the effect that a sea state will have upon the motion of a ship through the water.Calculation 

of Response Amplitude Operators (RAOs) in SeaFEM is done by analyzing the time series response of 

the ship, using a discretized white noise spectrum. This spectrum is defined by a number N� = 2u�� of 

waves of equal amplitude and periods varying between the maximum and minimum values defined by 

the user. The values of these N� periods are selected to match the discrete Fourier transform of the 

output signal, given by: 

 

X = k xÀ · e�8�Ä∆�∗ÀÅÆ��
À��  (11-1) 

 

Given Tu8À and Tu�¼, the minimum and maximum periods of the analysis, the frequency increment is: 
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∆f = Wfu�¼ − fu8ÀX WN� − 1X⁄ = ´ 1Tu8À − 1Tu�¼µ WN� − 1Xl  (11-2) 

 

The well-known Fast Fourier Transform algorithms give a procedure to obtain an exact evaluation of the 

transfer functions defined above. This way, the time step and the total computing time are internally 

fixed to match the required sampling time and total sampling points. Then, the holding frequency ∆f ∗ is 

evaluated as 

 ∆f ∗  = minW∆f , fu8ÀX (11-3) 

 

And the discrete frequencies are: 

 fÀ  = n · ∆f     n = 0, 1, 2, … ,N� − 1 (11-4) 

 

The required sampling frequency defines the time step as: 

 

∆t = 12∆f ∗  · 2u (11-5) 

 

The required number of sampling points defines the total calculation time as: 

 

T = 1∆f ∗ (11-6) 

  



12. SOLVER ACCELERATION 

12.1 Introduction 

Most of the computational effort of the proposed numerical algorithm is spent in solving the linear 

system resulting from the wave diffraction-radiation problem. Therefore, our main focused in order to 

reduce the computational time is speeding up the linear solver. To do so, two techniques, that can be 

used combined, have been analyzed: the use of deflated solver, and the use of parallel computing in 

graphic processing units. 

12.2 Solver deflation 

Deflation works by considering piecewise constant approximations on coarse sub-domains. These 

piecewise constant approximations are associated to the low frequencies eigenmodes of the solution, 

which are also the slow convergence modes [12,13]. Then, these slow modes can be quickly 

approximated by solving a smaller linear system of equations that can be incorporated to the traditional 

preconditioned iterative solvers in order to accelerate the convergence of the solution. Hence, the use of 

preconditioning technique is compatible with the use of preconditioners. 

The first step is to divide the domain into a set of coarse sub-domains capable of capturing the slow 

modes. Several techniques have been developed for this purpose [14,15]. Some authors has proposed a 

technique based on using seed-points to start building the sub-domains, and sub-domains are created by 

associating nodes to their closer seeds [15]. This technique has the disadvantage of requiring prescribing 

the seeds. 

The algorithm developed for SeaFEM [1] is based on level structure criteria, where nodes are associated 

to a central node based on the level structure rooted at this central node (concept from graph theory). A 

maximum level structure “L”, where L refers to the neighbouring level respect to the central node, is 

prescribed. Figure 10 shows a domain decomposition obtained using this level structure technique with 

level L=2. Ordered pair (sub-domain, level) is used to identify nodes and sub-domains they belong to, 

and their corresponding structure level. Notice that nodes will accept to belong to a new sub-domain, if 
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and only if its structure level in that sub-domain is lower than its level in its current sub-domain. The 

algorithm used to obtain such decomposition is presented step by step next: 

 

Step 0: Assigned level L+1 to all nodes  

Step 1: Start building sub-domain 0: offer level 0 to the first node of the mesh (root node for sub-

domain 0). It will become node (sub-domain, level)=(0,0) 

Step 2: Identify neighbours of the root node (node (0,0)) and offer them level 1: nodes (0,1) 

Step 3: Identify neighbours of nodes (0,1), and offer them level 2: nodes (0,2) 

Step 4: The procedure is repeated until the prescribed level “L” is reached 

Step 5: The first node still with level L+1 (based on the numbering of the nodes) is used as root node 

for sub-domain 1, and it is given level 0, becoming the root node (1,0) 

Step 6: Identify neighbours of the root node (1,0) and offer them level 1: nodes (1,1) (Notice that some 

(0,L) nodes might  become (1,1)) 

Step 7: Identify neighbours of nodes (1,1), and offer them level 2: nodes (1,2). (Notice that some (0,L) 

or (0,L-1) nodes might  become (1,2) if L>2 or L-1>2 respectively) 

Step 8: The procedure is repeated until the nodes (1,L) are identified 

Step 9: Repeat Steps 5-8 until there is no node with level L+1 

 

This algorithm guarantees that any node cannot have a lower structure level respect to any other root 

node. And the higher the prescribed level, the lower the number of sub-domains created.  

Although the previous algorithm provides good results, it can be improved by using it twice. In a first 

round, rather than using the prescribed level L, a structure level 2L is used instead. Then a first 

decomposition is found with a lower number of sub-domains and twice the maximum structure level. In 

a second round, the procedure is repeated with a maximum structure level L and using as root those 

nodes with higher levels. Figure 10 shows the sub-domain decomposition obtained using the two rounds 

technique. The first one shows the decomposition after the first round at level 2L, and the second shows 

the decomposition after the second round at level L starting of the first decomposition at level 2L. 

Notice that the level at the sub-domains boundaries is lower or equal than the prescribed level L, and 

always minimum respect to any central node (node of level zero). 

The recommended number of sub-domains might depend on the specific case under study. Usually in 

the order of hundred is a recommended value. In our specific case, the matrix of the linear system to be 
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solved remains the same during the calculation, so that the sub-domain decompositions have to be 

carried out just once. 

The deflated system has to be solved every iteration of the solver. However, since in our case study the 

linear system of equation to be solved remains the same along the simulation, so does the deflated 

matrix. The inverse of the deflated matrix can be calculated just in the first time step, and then be stored. 

Hence, the resolution of the deflated system within each iteration can be substituted by a matrix vector 

multiplication. 

 

Figure 10: Sub-domain decomposition using the neighboring level algorithm 

 

 

 
 

Figure 11: Sub-domain decomposition using the two-rounds neighboring level algorithm. (a) Decomposition after first round. 

(b) Decomposition after second round 
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12.3 Solver GPU acceleration 

The fast development of the videogame industry is leading to higher computational capabilities of 

GPUs. Hence, their use for heavy computations in computational fluid dynamics is becoming more 

common (see [16,17]). 

The implementation carried out in SeaFEM [1] is based on the well-known CUDA, a parallel computing 

platform and programming model invented by NVIDIA. It is focussed in speeding up the iterative solver 

using the functions provided by the cublas and cusparse libraries. 

Deflated and non-deflated preconditioned conjugate gradient (CG) algorithm has been implemented in 

CUDA, along with a sparse approximate inverse (SPAI) preconditioner [18] and incomplete LU 

decomposition (ILU) preconditioner. However, using the sparse lower and upper triangular solvers 

provided in the cusparse library for ILU preconditioning resulted in poor performance. This poor 

performance can be expected since solving triangular system are not suitable for massive parallelization 

across tens of thousands threads [19], as required by GPUs in order to hide memory latency. Therefore 

we will omit the use of the ILU preconditioner when reporting GPU results. 

Since the system matrix remains the same along the computation, preconditioners are calculated just 

once and in the first time step. Then, computational time invested in calculating preconditioners is 

negligible when compared to the total time spent in the linear solver during the whole simulation. 

12.4 CPU Direct solver 

SeaFEM has available a direct solver to be used with CPUs. It is advised to use this solver in those cases 

where the system matrix remains the same along the simulation. If the system matrix needs to be 

updated as the simulation advances, the direct solver will be slower when compared to iterative solvers. 

12.5 OpenMP parallelization 

OpenMP has been used for parallelization of CPU solvers as well as for evaluating analytical formulas. 

For instance, when evaluating irregular seas modelled by spectra discretization based on Airy waves, a 

large number of waves might be used, requiring a significant CPU time compared to the solver CPU 

time. Open MP has been used in SeaFEM to reduce the CPU time of this type of computations. 
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13. FLUID-STRUCTURE INTERACTION 

ALGORITHM 

SeaFEM features a fluid-structure interaction algorithm, able to perform coupled analysis with the 

structural solver of the Tdyn’s suite Ramseries. 

The fluid-structure coupling is performed by an implicit iterative algorithm. This way, the pressure field 

computed in every iteration of the diffraction-radiation solver is sent to the structural solver to compute 

the body deformation. The resulting displacements are sent back to the fluid solver, and used as 

boundary condition to compute the new pressure field for the following iterations. The iterative process 

continues until the convergence norm condition is fulfilled; the relative distance of the pressure vectors 

between two successive iterations is below a given value. The iterative algorithm is accelerated using the 

Aitken method [6]. 

Since the diffraction-radiation and structural solvers are independent, the strategy used to communicate 

both solvers is based on the interchange of information at memory level by means of TCP-IP sockets. 

The library developed for this purpose, also takes care of the data interpolation from one mesh to 

another mesh. 
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14. MATHEMATICAL MODEL FOR FREQUENCY 

DOMAIN PROBLEMS 

14.1 Glossary 

Φ Velocity potential B Gravity magnitude % Wave amplitude & Circular frequency K Wave number �� Incident wave velocity potential 2 Angle between the direction of propagation of the incident wave and the positive 4-axis �   Radiated component of the velocity potential �d Diffracted component of the velocity potential É�  Body’s movement amplitude concerning i
th

 degree of freedom ë Body forward speed &� Encounter frequency %�,� Added mass matrix ��,� Damping matrix 

  

14.2 Boundary element method 

In SeaFEM, the Boundary Element Method (BEM) is used to solve problems stated within the 

framework of the frequency domain analysis. The frequency domain solver of SeaFEM is based on an 

adaptation of NEMOH, developed by Ecole Centrale de Nantes (for further information about NEMOH, 

see lheea.ec-nantes.fr/doku.php/emo/nemoh/start). 

To solve the general equations, the boundary element method is used and applying Green’s function, it 

allows taking into account the boundary conditions on body, bottom and free surface. BEM solver has 



 SeaFem Theory Manual  

 

 - 80 -  

the following approach: it decouples the resolution of the linear free surface Boundary Value Problem 

and the definition of the boundary condition on the body. 

Assuming an irrotational flow, the velocity can be expressed as the gradient of the velocity potential. 

The latter assumption along with incompressibility supposition leads to the Laplace equation: 

 ∇�Φ = 0 (14-1) 

 

The first order dynamic free surface boundary condition is applied: 

 Φg + B� = 0 (14-2) 

 

And the kinematic free surface boundary condition establishes a relation between the free surface 

elevation � and Φ: 

 �g = ΦN (14-3) 

 

Introducing (14-1) into (14-2), the equation becomes: 

 Φgg + BΦN = 0 (14-4) 

 

Assuming that the solution is of harmonic type, then the last equation becomes: 

 Φ = ReW%e�XgX (14-5) 

 −&� · Φ + BΦN = 0 (14-6) 

 

In the frequency domain, the first order free surface boundary condition becomes: 

 ΦN − K · Φ = 0    ,    ' = &�/B (14-7) 

 

The velocity potential of the incident wave is defined as: 
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�� = - · B · %& · cosh5? · W: + ℎX6cosh ? · ) · e��·�·K·��¬á��·�·M·¬8À á (14-8) 

 

Where ? fulfils dispersion relation: 

 &�B = ? · tanh? · ) (14-9) 

 

And 2 is the angle between the direction of propagation of the incident wave and the positive 4-axis.  

 

As the problem is linearized, the velocity potential can be decomposed into two components: radiation 

and diffraction. 

 � = �  + �d (14-10) 

 

�  = - · & · k É� · ��
\

���  (14-11) 

 �d = �� + �$ (14-12) 

 

Where É� denotes the amplitude of the body’s movement in its six degrees of freedom and �� the 

corresponding unit-amplitude radiation potentials. 

14.3 Forward speed corrections 

Assuming a forward speed of the bodies as ZeÌ9|1-6 = ë, ¨-he|1-9. = 2, then a few corrections have 

to be made to take into account this effect. First, the frequency has to be changed to a frequency of wave 

encounter: 

 &� = & − ? · ë · cos2 (14-13) 
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Here ? is the wave number, & the frequency without velocity and &� the encounter frequency. Other 

changes to be made are for the added mass and damping matrixes: 

 

%D,d = − ë&� · �D,D�  (14-14) 

 �D,d = +ë · %D,D�  (14-15) 

 %d,D = + ë&� · �D,D�  (14-16) 

 %d,D = + ë&� · �D,D�  (14-17) 

 �d,d = + ë�&� · %D,D�  (14-18) 

 

This formulation has been taken from the one presented in [19]. 
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