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1.1

1. MATHEMATICAL MODEL FOR WAVE

PROBLEMS (PART )

Glossary

Fluid velocity

Velocity potential

Free surface elevation

Incident wave induced velocity

Incident velocity potential

Incident wave elevation

Diffraction-radiation wave induced velocity

Diffraction-radiation velocity potential

Diffraction-radiation wave elevation

Free surface pressure

Hydrostatic pressure at point P.

First order hydrostatic pressure variation at point P € Sg.

Up to second order hydrostatic pressure variation at point P € Sg.
First order pressure at point P induced by INCIDENT wave

Up to second order Pressure at point P induced by INCIDENT wave
First order pressure at point P induced by DIF-RAD wave

Up to second order Pressure at point P induced by DIF-RAD wave
First order body surface displacement at point P

Up to second order body surface displacement at point P

Body surface normal vector at point P

Initial body surface normal vector at point P

Body surface normal vector after first order movement at point P
First order body velocity over body surface at point P

Up to second order body velocity over body surface at point P

Up to i-th order displacements
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S,

Up to i-th order linear displacements

0'  Up to i-th order rotational displacements
H  Second order rotation tensor

Q  Fluid domain

Sg  Instantaneous body boundary

S3  Initial body boundary

S}  Instantaneous body boundary corresponding to first order movements

Sit2  Instantaneous body boundary corresponding to up to second order movements

A Wave amplitude

w  Wave angular frequency
K  Wave number

a;  Wave phase delay

H  Water depth

1.2 Governing equations

1.2.1 Flow equation and boundary conditions

Assuming incompressible flow (V - v = 0 ) and irrotational flow (Vxv, =0= v, =V¢), then, the flow

governing equations are given by:

Ap =10 in ()
% Z—Z%+g—(§%—3—f=0 onz=_(
aa—(f+%V(p-V(p+%+gE=0 onz=¢
vy, Ny, +v, N, =0 on Sg
P, =—p%—f—%pv<p-v<p—pgzp in Q)

1.2.2 Solution approach

Taylor series expansion

Potential flow

Free surface kinematic boundary condition

Free surface dynamic boundary condition
Body boundary condition

Pressure at a point P

(1-1)
(1-2)
(1-3)
(1-4)

(1-5)
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Free surface and body boundary condition (BC) will be applied on z = 0. Taylor series expansion are

carried out to both free surface BCs around z =0 to approximate the BC on z=¢. Body boundary

condition will be applied on S3. Taylor series expansion are carried out around S3 to approximate the

BC on Sg.

Perturbed solution

A perturbed solution based on stokes waves approximation is used, where the velocity potential and free

surface elevation are perturbed as:

0 = el + 2? + S3¢3 + - (1-6)
E=€elel + 282+ 383 + - (1-7)

Body movement solution is also assumed to be a perturbed solution:

X =€eX' +e2X2 +e3X3 ... (1-8)
V=€ +e?V? + €303 .. (1-9)

Then the translational vector of any point P on the body surface can be perturbed as:

r, =€e'ry +ery +€’r; ... (1-10)
where
X' =(8.,65,6L06L,05,00) = (68,6") (1-11)
r; = 6"+ 60' x ROP° (1-12)
r%)+z = &§1%2 4+ @1+2 x ROPO + HROPO (1-13)
—(65 +62) 0 0
H = > 20,0, —(62 +62) 0 (1-14)
20,0, 293;92 _(99% + 033)



Vi = (v};,v},, 'Uzi,a_))ic’ w}i” wé) — (vl” wi)

v, =v' + w' x ROP?
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12 = pl+2 4 1+2 x ROPO 4 HROPO

1 0 1 0
np—np+0 X ny,

(1-15)
(1-16)
(1-17)
(1-18)

Figure 1: First and second order rigid body movement

1.3 First order approach

1.3.1 First order governing equations

After carrying out the Taylor series expansions, using the perturbed solution, and retaining terms of

order ¢ , the first order governing equations become:

Apl =0
o8 9t
ot 0z
ot

Prs
—+—+g8 =0
T, g%

1,0 1 ,,,0 _
vy My, + U, np—O

in Q
inz=20
inz=20
inSB

(1-19)
(1-20)
(1-21)

(1-22)
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and the first order pressure at a point Pp1 on the body surface is

Py =Py +Pi+P) inSg (1-23)
1 _ 29 Lo _ 1 _ 1
where P = —P Py = —pgz,,and Py = —pgr,,.

1.3.2 First order decomposition solution

The total velocity potential can be decomposed as:

ol =yl + ¢! (1-24)
£ =14t (1-25)

where 1! is the incident wave potential, and ¢? is the diffraction-radiation wave potential.

First-order incident wave solution

The incident wave velocity potential 1! fulfils the following equations:

APt =0 in Q (1-26)
1 1

";it_"’aiz:o onz=0 (1-27)

0 1

=t gll=0 onz=0 (1-28)
1

aai =0 onz=-H (1-29)
Z

Egs. (1-26)-(1-28) has an analytical solution, known as the Airy wave solution:

A;g cosh(lkiI(H + z))
w; cosh(|k;|H)

Yl = sin(k;x — w;t + a;) (1-30)

-10 -
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¢ = Z A; cos(kix — w;t + a;) (1-31)
i

where A is the wave amplitude, H is a constant water depth, k = 2Tﬂ(cos(]/) ,sin(y)), L is the wave

length, y is the wave propagation direction, w = Z?H, T is the wave period, and « is the wave phase

delay. The following dispersion relation holds:
wi = glk;| tanh(|k;|H) (1-32)
and the fluid pressure induced by the Airy wave in a point P is given by:

cosh(lkiI(H + Z))
P;w = Z pIA; cosh([k.[H) cos (kix — w;t + a;) (1-33)
l

In the asymptotic case of infinite water depth (H — o), the factor cosh (|k|(H + z))/cosh (|k|H) —
exp(|k|z).

First-order diffraction-radiation wave problem

The governing equations for the diffraction-radiation velocity potential ¢! is given by:

APt =0 in Q (1-34)
ont ot

— =0 onz=20 1-35
Jt 0z ( )
opt P

%+§+gn1:o onz=0 (1-36)
vy - ny =—v,-n) — vy, - ny onP € S, (1-37)

and the fluid pressure at a point P on the body surface is given by:

Py = Py + Pyp+Pyy + Poy onP €Sy (1-38)

-11 -
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where P, = —p? p ,P = —pgz, and Py, = —pgr,,.
1.4 Second order approach

1.4.1 Second-order governing equations

After carrying out the Taylor series expansions, using the perturbed solution, and retaining terms up to
order ¢, and considering that 92 = @' 4+ @?, g2 =¥ + 8, BJ*2 = B} + P7, Xp'? = X} + X3,

Vit =V + Vg, vt =vi+v;, vt =v, +v;, rt? =r,+r; the governing equations

become:
Aplt2 =0 in Q (1-39)
01+2 al+2 0 al alal alal
5 9 _p 0 (00 B0 Ko .., (1-40)
Jt 0z 0z \ 0z dx dx dy dy
dp'*t?  Prg Leo L0 (09" 1
ifs —_a_ (X \_Z v inz=0 1-41
at+p+gE el 2<p @' inz (1-41)
(vy +vy) -np + (Vi +v3) -np = —(ry - Vvy) -np in S (1-42)
and the pressure at a point P on the body surface is:
P*2 = Py + Pi*? 4+ Ppt? in Sy (1-43)

1+2 1
where P§ = —pgz,, and Pi*?* = —pgry; %, and Pj** = —p aq;t —pry -V (‘%) — P%prl Vol

1.4.2 Second-order decomposition solution

Second-order incident wave solution

The second-order total velocity potential can be decomposed as:

-12 -
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= P2 + ¢ (1-44)
2=+ (1-45)

where 12 is the second-order incident wave potential, and ¢? is the second-order diffraction-radiation
wave velocity potential. The up to second-order incident wave potential and free surface elevation fulfils

the following equations:

AYlt2 =0 in Q (1-46)
a<1+2 alp1+2 . azlpl azl alpl acl alpl
— = —_——— =0 1-47
ot "oz % 922 “ax ox ay oy °MF (1-47)
al’b1+2 1+2 1 a alpl 1 1 1
ot + 907 = —( a2\ 3 —EVl/) -V onz=0 (1-48)
l/)1+2
P 0 onz=-H (1-49)

The solution to Eqgs.(1-46)-(1-49) is as follows:

Ytz =yl 4 ZB ssin (2(k;x — w;t + a;))

+ Z Z B} cosh |k + -|(H + Z)) sin ((kl-x —wit+6;) + (k]-x — w;t + a]-)) (1-50)
j>i i
+Z z Bl—] cosh (|kl - k]|(H + Z)) sin ((kix —w;t+ 51) - (k]x - a)jt + a]))
> 1

where the coefficients are given in table 1. In the asymptotic case of infinite depth (H — o) the
coefficients BO -0, D+ — 0, Dy = oo, B;;- — 0, B;; = 0. Then, the second order velocity potential

becomes null. The wave elevation up to second order is obtained from:

0 1+2 0 1 1
<1+2 — g< l/;t p Zl <al/;>+ Vl/)l lel ) (1-51)

and the fluid pressure induced by the second order wave potential at a point P is:

-13 -
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‘o ¢1+2 a¢1
P, 2——p< 7 t3 wﬂ v¢> (ré-V<¥>) (1-52)

In the asymptotic case of infinite depth (H — o) the coefficients B ;i =0, D — 0, Djjz = o0, Bi+j - 0,

B;; — 0. Then, the second order velocity potential becomes null.

Table 1: Stoke’s second-order wave potential coefficients

0 _ 3A4%g|k;|  cosh(2|k;|(H + 2))
Y 8w; sinh3(|k;|H) cosh(|k;|H)

+ _ Zk 1Cl]k
19) Dl-lj-k
B — Yi=1Ciix
L] Dl;k
Cij1 = Zl_g]wiz(wi + wj)
1;1 21 / wiz(wi w])
Aid; j
Ci-|]:2 _E(wl j _gZ ;) )((U1+(U])
_ AiA; ik
Cija = _E(wiwj +g° ™ )(w; — w))
AiA; g
Cihy = —#—(|kl|2 +k; - kj)
_ _Adjg
Cijs = — ] (|kl|2 ki k;)

1

1

-14 -
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Second-order diffraction-radiation wave problem

The governing equations for the diffraction-radiation velocity potential up to second-order ¢p1*2 is given

by:

Ap1t2 =0 in Q (1-53)
an1+2 a¢1+2 3 a¢1 anl a¢1 anl ad)l acl a¢1 azl alpl anl alpl anl inz -0 (1 54)
at dz  0x 9x dy dy O0x dx dy dy Ox dx Qdy 9y B
a¢1+2 Pfs 1io
ETo 3 +9n

L0 (39! 9 [t 9 (oYl 1 inz=0 (1-55)
—‘”1£<7>‘<15<7>‘"15<7>‘5‘7‘1’1'W’l“wl
.v¢1

vh np + vy ny = —(vptvy) ny — (v§+v12p +1y - (Vg + Vvlll,)) -nd inPeSg (1-56)

and the fluid pressure at a point P on the body surface is given by:

Pi*? = Poy + Py ?+Ppi? + Pp 32 inP €Sy (1-57)
where Py, = —pgz, Pyp? = —pgr,,; * and:
a¢1+2 a¢1
142 _ 1 1 1 1 1 ;
Pog” =—p e —pEch Vo' —pVy* - Vo' —pr; -V TS inP € Sp (1-58)

-15 -
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2. NUMERICAL MODELS (PART )

2.1 Glossary

¢  Diffraction-radiation velocity potential
n Diffraction-radiation wave elevation
Prs  Free surface pressure
[k Surface limiting the computational domain in the horizontal directions
R!  First order source terms in combined FS BC for second order solution
S!  First order source terms in kinematic BC for second order solution
L Laplacian FEM matrix
¢  Vector of diffraction-radiation velocity potential at nodes
b?  FEM Neumann body boundary condition
bR FEM Neumann radiation boundary condition
b%  FEM Neumann free surface boundary condition
bZH  FEM Neumann bottom boundary condition
At  Time step

k(x) Wave absorption coefficient

2.2  Finite element formulation

This section presents the formulation based on the finite element method (FEM) to solve the system of
the wave diffraction-radiation problem. This formulation has been developed to be used in conjunction
with unstructured meshes. The use of unstructured meshes enhances geometry flexibility and speed ups
the initial modelling time.

Let O, be the finite element space to interpolate functions, constructed in the usual manner. From this

space, we can construct the subspace Q, ,, that incorporates the Dirichlet conditions for the potential ¢ .
The space of test functions, denoted by Q,, is constructed asQ, ,, but with functions vanishing on the

Dirichlet boundary. The weak form of the problem can be written as follows:

Find [¢h] € QM, by solving the discrete variational problem:
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vah-quth: jvh-¢3ﬁdF+ jvh-¢3§dF+ fuh-¢3f°dr+ jvh PZHdr
Q rB IR rZo rZ-H

Vup, € Qp

(2-1)

Where ¢Z, @R, Afo and qb ~H are the potential normal gradients corresponding to the Neumann
boundary conditions on bodies, radiation boundary, free surface and bottom, respectively. At this point,

it is useful to introduce the associated matrix form:
L = b® 4+ bR 4+ b + bZ-H (2-2)

where Lis the standard laplacian matrix, and b%, b®, b%, and b%?-H are the vectors resulting of
integrating the corresponding boundary condition terms. Regarding the bottom boundary for the
refracted and radiated potential, it is imposed naturally in FEM by bZ-# = 0. A detailed description of
the FEM model implemented in SeaFEM can be found in [1]

2.3 Free surface boundary condition

Combining the kinematic and dynamic free surface boundary conditions, the free surface condition

reads:
62¢ a¢ fs _
2 gaz+6t<p>+{Q} 0 (2-3)

and is implemented as a Neumann boundary condition that fulfils the flux boundary integral:
b% = Mz,, (2-4)
where M rZo is the corresponding boundary mass and Q* are the transfer terms from the first-order to the

second-order problem (see Egs. (1-54)-(1-55)):

Q! = 9,R! — §1, (2-5)
0 d 0
R =n’ az<§;> ¢~ (;) n'— (;’;>+ VoVl + VY- Ve, (2-6)

a¢1 anl N a¢1 anl a¢1a_<1 Lo¢ a(pl azl alpl anl N alpl anl

1 =
S 0x dx dy dy 0x dx 0y ay 0x dx  dy OJdy

(2-7)
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62¢1 azlpl 62¢1
1 . | _ 71
1 d0z2 1 d0z2 ¢ d0z2’
where (3,R1)™! = 25/12(R)™! — 4(RV)™ + 3(RH)™ 1 — 4/3(RV)™2 + 1/4(RH)™ 3 . Eq. (2-

3) is discretized in time using the following numerical scheme:

¢n+1 _ 2¢n + ¢n—1 B . 1 _ N - P};+1 _ P};_l

(2-8)

- (@™ +100)" + (@)
where for the specific case where Prg = 0, the above scheme becomes a fourth order compact Padé
scheme.The free surface elevation is discretized in time using the following fourth order in time
numerical scheme:

1 (25 prtt

4 1 s
nn+1 — _E<E¢n+l _ 4¢n + 3¢n—1 _ §¢n_2 + Zd)n—g) _ ;_g{_(sl)n+1}' (2_9)

2.4 Radiation condition and wave absorption

Waves represented by ¢ are born at the bodies and propagate in all directions away from the bodies.
These waves have to either be dissipated or to be let go out the domain so they will not come back and
interact with the bodies. Because of this, a Sommerfeld radiation condition at the edge of the

computational domain is introduced:
0t +cVdp-ng =0 inTx (2-10)

where [ is the surface limiting the domain in the horizontal directions, and ¢ is a prescribed wave
phase velocity. This radiation condition will let waves moving at velocity ¢ to escape out the domain.

The numerical scheme used to implement the radiation condition is

d)n—l _ d)n

inT, 2-11
e R (2-11)

CHRSES

However, waves with very different velocities will not be leaving the domain. Hence, wave absorption is

also introduced into the dynamic free surface boundary condition by varying the pressure such that:
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d¢
Prs(x,t) = K(x)pg (2-12)

Eq. (2-12) increases pressure when the free surface is moving upwards, while decreases the pressure
when the free surface is moving downwards. By doing this, energy is transferred from the waves to the
atmosphere and waves are damped. However, the coefficient x(x) will be set to zero in the area nearby
the bodies so that damping will have no effect on the solution of the wave structure interaction problem.

All the numerical models for the wave diffraction-radiation problem implemented in SeaFEM are based

on [1] and [20]
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3. HYDRODYNAMIC LOADS ON BODIES (PARTI)

3.1 Glossary

¢  Velocity potential

13 Free surface elevation

ry  First order body surface displacement at point P

L Up to second order body surface displacement at point P
n, Initial body surface normal vector at point P

n, Body surface normal vector after first order movement at point P
S9  Initial body boundary

&% First order body displacements

@'  First order body rotations

Hydrostatic restoring matrix

VvV Body displacement

xg  Coordinates of body center of buoyancy

x;  Coordinates of body center of gravity

x,  Coordinates of a point P

GP Vector x, — X

3.2 First order loads

Hydrodynamic forces and moments are obtained from direct pressure integration over the body surface.

The body gravity center will be used as a reference for body movements and moments acting on it.

F! = f Pindds = Fj; + Fj; + F}, (3-1)
S

0
B

M! = f Py(xg—x,) x ny ds = My + My + M}, (3-2)
S

0
B

where sub-index H stands for hydrostatic loads and D stands for dynamic loads. The hydrostatic loads

are split as follows:
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F) = —f pgzny ds = pgVv (3-3)
SB

MY = —j pgzGOP° x nj) ds (3-4)
SB

Fl = —f pgryny ds = K,é&! (3-)
Sk

(3-6)

M3 = —f pgr,GOP° x ng ds = K, 0
Sk

where V is the body displacement, and ﬁH is the hydrostatic restoring matrix, which are obtained as

follows:

V= —L ZpNy,ds

0
B

1

_ 2
Xp = —— X5N,,ds
B ZV S% p'tpx

_ 2
= —— n,,ds
VB 2V Jgo Yo py
1 2. 4
Zp = —— zZ:n,,ds
B ZV S% p'ipz

Ky (3,3) = pgf Ny, ds
S5 (3-7)

Ku(3,4) = pg j (9 = y6) npds
SB
Ky (3,5) = —pg jo (xp — x6) np,ds
SB

2
Ku(44) =pg | (yp = ¥¢) npzds + pgV¥(zs — z¢)
SB

KH(4"5) =—pg jo (xp - xG)(yp - yG) npzds
Sp

Ky (4,6) = —pgV(xg — x¢)
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2
Ku(55) = pg | (xp = %6) npzds +pg¥(zs — 2)
Sp

Ky (5,6) = —pgV(ys — ¥)

where B stands for the body center of buoyancy, and G for the body center of gravity. The dynamic

loads are computed as:

dp’ (3-8)
Fh=— 0d
D L%p at np S
do? , 3-9
M}jz—fp;pt GOP° x n) ds (3-9)
SB

3.3 Second order loads

Up to second order loads can be split as:

F1*2 =F) + FL, + F4 + F, + F3 (3-10)
M*2 = M}, + M}, + M% + M}, + M3 (3-11)

Where the hydrostatic loads are:

Fit? = —fo pg(z, + 152 )n} ds
Sp

(3-12)
=F% +FL + 0" x Fl, + ;6% — j 0g (?IROPO) ng ds
s z
Mit? = —f pg(z, + 17572)GOP® x n} ds
SO
’ (3-13)
= MY + M}, + 6' x M}, + K,6? — f pg (HROPY) G°PY x nf ds
Sy z
Then:
F% = K,;6% + 0 x F} —f P9 (ﬁROPO) np ds (3-14)
Sk z
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M?% = K,0% + 0! x M}, — f 0g (ﬁROPO)Z GOPY x nl ds
S

0
B

On the other hand, dynamic loads up to second order are split in four components:

Fpy'? =FL+ F2 =F) +F5 +F%,+ F5; + F3,
My = M, + M§ = M}, + M3, + M§, + Mj; + M3,

where

2

F3, =—p T np ds + 6" x Fj,

G
F3,=— L.v(——)|ndd
v pfsg(rp <5t>>n” ’

1
Fos =—5p | (Vo' -Vohynyds
Sp

2
1 2 nO
Fho= =500 [ (8= 1) —2—adi
ry 0 2
1—n,,
0p? ——»
M%1=—p WGOPOXngds+01xM%
Sh

2 o992\ Gopo o 0
MDzz—pf - V|{——||G°P° Xn,ds

1 -
M%; = —5P 0(V(pl -Vo1)GOPO x n) ds
Sh

1 _ n
M3, = ~5Pg (= rplz)z GOPO x —P2 I
s 1- ngzz

3.4 Mean drift loads

(3-15)

(3-16)
(3-17)

(3-18)

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)

(3-24)

(3-25)

Being the first and second order responses harmonic and taking time average, the following relations

holds when:
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<Fl>=0
<M'>=0

<F£,>=<01><F},>—<f

" g (le)Z ny ds >

<M£,>=<01><M},>—<f

pg (fIROPO) G°P° x nyds >
S% z

< Fjy >=<0' x F}, >

0 1
<F%,>=—p <f0 (r%,-V(a—(i>>ngds >
Sp

1
< Fjy >= —5p < O(pr1 -Vo)n) ds >

Sg

1
< Fpy >= —5p9<f0(51—rpz) [ >
I'p

< M}, >=< 0' x M}p>

0\ \ ——
< M3, >= —p<f0(r11,-v<a—¢;>>GOP°xngds>
Sb

1
< Mj; >= —5P < f (Vo' - Vo) GOPY x ny ds >

nO
< M3, >———pg<j (El—rpz) GOPOx —2 —di >

0 2
1-ny,

(3-26)
(3-27)

(3-28)

(3-29)
(3-30)

(3-31)

(3-32)

(3-33)

(3-34)

(3-35)

(3-36)

(3-37)

Second order terms depending with non-zero time average depends on first order quantities. Hence,

second order drifting loads only depends on the first order problem solution.
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4. MATHEMATICAL MODEL FOR WAVE

PROBLEMS (PART )

4.1 Glossary

T, Linear velocity of the moving body
W, Angular velocity of the moving body

V, Moving body total translational velocity

u  Water current velocity
o  Fluid velocity

¢  Velocity potential

&  Free surface elevation
vy Incident wave induced velocity

Y Incident velocity potential

¢ Incident wave elevation
vy  Diffraction-radiation wave induced velocity

¢  Diffraction-radiation velocity potential

n  Diffraction-radiation wave elevation
Prs  Free surface pressure

B,  First order pressure at point P induced by DIF-RAD wave
n, Initial body surface normal vector at point P
v, First order body velocity over body surface at point P
Fluid domain

Sg  Initial body boundary

A Wave amplitude

w  Wave angular frequency
K  Wave number

6; Wave phase delay

H  Water depth
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4.2 Problem statement

In this section the wave problem is coped in the case of body moving across the fluid domain in the
presence of waves and water currents. Both, body velocity and water current will be assumed to be
much larger than velocities induced by waves and therefore, cannot be assumed to be first order
magnitudes.

We consider the first order diffraction-radiation problem of a ship moving on the horizontal plane. The
two dimensional movement of the ship is identified by V,(x) = Ty, + W}, X (X — Xg) , where T, and W,
are the linear and angular velocity of the moving body.

As before, we assume incompressible and irrotational flow, being ¢ the velocity potential. The
following assumptions are made on the order of magnitude of the velocity components and free surface

elevation €:

[Vo~0 (D) lu~0(1)] 0, ~0(1) 0,~0(1)
#:~0(€) $ap~0(€) £~0(€) £,~0() *1

Based on the previous assumption, the governing equations for the first order diffraction-radiation wave

problem are:

Ap =0 in( Potential flow (4-2)

d 1 P
a—(f +u-Vye + EVh(p -Vho + f +9§=0 inz=0 Dynamic boundary condition (4-3)

d d . . .
a_i + (u+ V) - Vi€ — a_(p =0 inz=0 Kinematic boundary condition  (4-4)
z
v, n,+(u+v,) n,=0 in Sg Body boundary condition (4-5)
4] .
6_(p =0 inz =—H Wall boundary condition (4-6)
z

and the pressure at an arbitrary point of the fluid domain is:

0 1 .
P,=—p (a_(f +u-Vye+ Ev(p Vo + gZp> Pressure at a point P 4-7)

-6 -



SeaFEM Theory Manual

4.3 Velocity potential decomposition

In order to solve the governing equations provided in Egs. (4-2)-(4-6), a velocity potential

decomposition is introduced. The total velocity potential can be decomposed as:

o=+ (4-8)
E=0+7 (4-9)

where P and ¢ are the incident wave potential and elevation respectively, and ¢ and n are the
diffraction-radiation velocity potential and free surface elevation. Then, we can split the governing

equations into the following sets of equations:

4.3.1 Set 1: incident waves

Ap =0 in Q (4-10)
] .

a—l/t)+u-Vhl/J+g<=0 inz=0 (4-11)
¢ op .

a.}.u.vh _Ezo inz=0 (4-12)
W_, inz=—-H (4-13)
0z

This set of equations has an analytical solution (Airy waves):

Y = ZAi‘g cosh(lk;|(H +2) sin(k;(x — ut) — w;t + 6;) (4-14)

w; cosh(|k;|H)

(= Z A; cos(k;(x —ut) — w;t + 6;) (4-15)

4.3.2 Set 2: governing equations of wave diffraction-radiation problem
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Ap =0 in Q) (4-16)
ad) 1 1 Pfs .
E+u-vhcp+§thp-Vh¢)+Vh1/)-Vh¢+§Vhlp-Vhlp+7+gn=0 inz=20 (4-17)
on (710 .
E+(u+vh¢+vh¢)'th+(vh¢+vhlp)'vh<_£:O inz=0 (4-18)
v, Ny, + (u+vy+vy)-n,=0 inSg (4-19)
0

99 _ 0 inz=-H (4-20)
0z

From first order wave theory, we know that ,~0(€) and {,~0(€). Then, the terms %1/) - Vpap~0(€?),

Vi - Vi{~0(€?), and V3 - Vyn~0(€?). Neglecting these terms in the second set of equations (Egs.
(4-16)-(4-20)), and using the analytical solutions of Airy waves, the governing equations for the first

order diffraction-radiation wave problem becomes:

Ap=0 in Q (4-21)
6(1) 1 Pfs .
E+uvh¢+zvh¢Vh¢+VhlpVh¢+7+gn=0 inz=20 (4-22)
d d .
a—Z+(u+vh¢)-vhn+vh¢-vh<—a—f=0 inz=0 (4-23)
Vg -n, = —(v, +u+vy) - n, in Sg (4-24)
299 _, inz=—H (4-25)
0z

and the pressure induced by diffracted and radiated waves is:

0 1
p="P (a_(f + U+ Vg + Vi) Vi -5V V¢) (4-26)

Notice that the terms V3 - V¢ and V¢ - V,C accounts for the deviation of the incident Airy waves
due to the fact that the incidents waves are transport by a non-uniform flow field. Also, the terms
Vihod - V¢ and Vi@ - Vi are not subject to any kind of linearization so are, which enables to simulate

non-steady base flows.
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4.4 Governing equations in a moving frame of reference

Based on the numerical approaches used in this work, it is convenient to solve Eqs. (4-21)-(4-25) in a
frame of reference fixed to the moving body rather than on the global frame of reference. Therefore, the
aforementioned equations will be solved in a local frame of reference. Figure 2 shows the global and
local frame of reference. This frame of reference is assumed to match the global frame at time zero. For
an observer sitting in the ship, the flow field around the ship will be

U,(x) = u—V,(x) . Therefore, the governing equations in the local frame of reference become:

Ap =0 inQ (4-27)
a9 1 Prs _

ot —+ Ub Vh¢ + = Vh¢ Vh¢ + Vhl,[) Vh¢ + 7 + agn = 0 inz=20 (4-28)
d 0 .
a_rt’+(Ub+Vh¢)'vhn+vh¢'vh<_a_(§=0 inz=0 (4-29)
Vg -n, = —(v, +u+vy) - n, in Sg (4-30)
6_(/) =0 inz=-H (4-31)
0z

and the pressure induced by diffracted and radiated waves is:

0 1
By = (S0 4 (U + Vo + Vuth) - Vap — 5V 7)) (4-32)
Yo A
Vb(o)

Yo

\

Flgure 2: Global and local frame of reference.
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where the incident wave potential and incident wave elevation must be transformed to the local frame of

reference.

4.5 Flow linearization

The previous governing equations have been obtained under the assumption that v4~0(1). Then, the

free surface boundary conditions can be written as follows:

0 1 P,
a—qf+(Ub+Vh¢)thb—EthbVh¢+Vh1,th¢+§+gn=0 inz=20 (4-33)
0 d .

a—z+ (Up + Vn) - Vin +Vh¢'vh<_a_(£= 0 inz=0 (4-34)

where Uy, + V¢ represents the convective velocity. Since the convective velocity depends on Vy, o, it
must be updated every time step to account for variations of the convective velocity. While retaining this
assumption allows for simulating transient flows, linearization of the convective velocity is a reasonable
practice in many cases. While SeaFEM is capable of imposing the free surface boundary conditions

without linearization at all, two commonly used linearizations are also available.

4.5.1 Neumann-Kelvin linearization

Neumann-Kelvin linearization assumes that V,d~0(€). This assumption is usually made for slender
bodies whose perturbation of the flow field is small compared to the convective velocity. Then the
convective velocity becomes the apparent velocity between the moving body and the water U, (x) =

u — V,(x). Then the first order free surface boundary conditions become:

a([) Pfs .

— 4+ Uy Vyp+—+gn=0 inz=0 (4-35)
ot p

on a9 .

— . _— = inz= 4-36
gt T Up V=5, =0 d (4-36)

and the pressure induced by diffracted and radiated waves is:
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B, =—p (Z—‘f + U, - Vyo ) (4-37)

4.5.2 Double body linearization

Double body linearization assumes that V;,¢»~0(1) but can be split into two terms: Vy¢ = VP8 +
Vno*. Vu¢PB represents the flow field when the free surface is substituted by a wall (equivalent to a
symmetric case using a double body). Then Vy,¢ is approximatelyV,,¢PZ, but perturbed by V,,¢p*, which

means V,pPP~0(1) and V,¢p*~0(€). Then the first order free surface boundary conditions become:

0 1 P

a—(f + (Ub+Vh¢DB) . Vh¢ - Evh(pDthd)DB + Vh¢DB . Vhl/) + % + agn = 0 inz=20 (4-38)
0 0 .

a—z + (Up+V,¢PP) - Vin+Vp P - Vi3 — a—(f =0 inz=0 (4-39)

and the pressure induced by diffracted and radiated waves is:

0 1
By = (20 4 (U 90 b7%) - T — 5 VPT84 V2 - ) (4-40)
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Neumann — Kelvin

<€ <€ < <€ <€
< <€ _ﬁ(—
b ’ Streamliés
< <€ <€
& é\ﬁ 4?/ <€
<€ € <€ <€
3 <€ < <€ <€
Double—body
* <
<€

W Streamﬁrf s
m ~<
F — N

¥ /
—

Figure 3: Free surface base flow based on Neumann-Kelvin (up) and double-body (down) linearization concepts.

A AAAA)\

4.6 Transom stern boundary condition

When considering moving bodies with transom sterns, flow detachment happens at the lower edge of the
transom. While potential flow is incapable of predicting this sort of detachment, a transpiration model
will be used to enforce it. To do so, the no flux body boundary condition is “not” used, on the contrary, a
flux is allowed. The condition to be imposed is that streamlines departing from the detachment edge
belong to the free surface. Then, the flux velocity is calculated based assuming that energy at the
detachment edge is the same that the energy at the free surface far away downstream, where the free

surface remains flat. Using Bernoulli’s equation, the flux velocity to be imposed is:

1 2 1 2
=Vis —gh=3V%
2 2 (4-41)

Ups = Vs | cos(B;s) =/ (V4 + 2gh) cos(Bs)

Figure 4 explains the transpiration model implemented in SeaFEM.
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SVE = gh =502
> g _— @ ~ —>

h$ Uts% Um%
——————————— %“—— Detachment edge f)

Hts

Figure 4: Transpiration model for transom stern Boundary condition with flow detachment.
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5. NUMERICAL MODELS (PART Il)

5.1 Glossary

¢  Diffraction-radiation velocity potential
n  Diffraction-radiation wave elevation
Prs  Free surface pressure
U  Free surface convective velocity
1  Identity matrix
W  Streamline convective matrix
L* Modified Laplacian FEM matrix
b%0  FEM Dirichlet free surface boundary condition
b? FEM Neumann body boundary condition
bZ4  FEM Neumann bottom boundary condition
At  Time step
d,  Differential operator for first derivative along streamline

6 Value between 0 and 1.

5.2 Stream line integration

The first order free surface boundary conditions can be written in a general, regardless whether the

convective velocity has been linearized or not, as follows

ad) Pfs .

—+U-Vyp+—+gn+R=0 inz=0 (5-1)
ot p

on dop .

— 4+ U -Vvn——+S=0 inz=20 5-2
T nl =5+ (5-2)

Where R and S represent some remaining terms. The numerical schemes adopted for solving the
kinematic-dynamic free surface boundary conditions are based on Adams-Bashforth-Moulton schemes,
using an explicit scheme for the kinematic condition, and implicit one for the dynamic condition. Then

¢™*1 is imposed as a Dirichlet boundary condition. The schemes read as follows:
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¢+ At(U - Vyp)™Ht = p" — At (%P]Z‘;l —gn™tt - R"“) inz=0 (5-3)

Nt =n" — At(U - Vi)™ + At(¢F — SP) inz=0 (5-4)
where U is the convective velocity. The convective term is obtained by differentiating along streamlines:

(U - Vo)™t = |U|™+19, " s
WU -vpm™ = U["0n" e
where 0, denotes the derivative along the streamline. This streamline derivative is estimated using a two
points upstream and one point downstream differential operator. Figure 5 shows the tracing of the
streamline at node C. The left (-1) and forward left (-2) points are the upstream points, while the right
(1) point corresponds to the downstream point. The values of the scattered velocity potential ¢p and
scattered free surface elevation 1 at -1, -2 and 1 points are obtained by linear interpolation between the

nodes of the edges where they lie on. The stream line differential operator reads as:

0,0 = w11 + Wopg + W_1¢p_1 + W_¢_;

(5-6)
0 Mo = Wil1 + Wollp + W_11_1 + W_37_;

where ¢, ¢p_1, ¢p_, are interpolated between (14, P1p), (P10 P—-1p), and (P_,4, P_2p) respectively.

In matrix form:

(T + AtwWn+1)pntl = 7(¢" — At (% P — gyttt — Rn+1)) inz=0 (5-7)

It = (T— AtW™) g™ + At(@p} — S™) inz=0 (5-8)

Where W is the streamline convective matrix, and I is the identity matrix. The stencils are obtained
using Taylor series expansion to impose a second order finite difference scheme along the streamline.

That is to say, solving the following system of equations:
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wit+wyg+w_ +w_,=0

Wlel - W_1Ax_1 - W_zAx_z =1

Ax? Ax? Ax?, -
w1—21+w_1 21+w_2 =0 (5-9)
Ax3 Ax3, Ax3,
WlT—W_l G —-—Ww_, G =0

Ax_ b

Figure 5: Streamline discretization

The associated matrix form to the finite element formulation for the governing equations is:
L' = b% + b? + bR (5-10)
where L* is the standard laplacian matrix modified to account for the left hand side of Eq.(5-7), b% is a

vector accounting for the right hand side of Eq. (5-7), and b and bR are the vectors resulting of

integrating the corresponding boundary condition terms.

5.3 Streamline Upwind Petrov-Galerkin (SUPG) formulation
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Alternatively, a SUPG stabilization scheme is also available in SeaFEM for the integration of the free
surface boundary conditions. Both, the dynamic and kinematic boundary conditions can be seen as a

convection-reaction equation:

]
a—)t(+u-vhx+Q=o (5-11)

Weak formulation:
a
foW(Z+U-Vyx+Q)do=0 (5-12)
Discrete Galerkin method:
vi [N (N1 KU vy, + NIQ’.”@) do =0 (5-13)

J

Time marching scheme:

. Ly tl_gom , .
Vi [, NNV Z—2do + [, N'(U™L-VpNY) 3™ 0do

(5-14)

+ [, N'NIQ}*®do =0

SUPG Stabilization:

[NINTEZZE oy [ ONE(UE)E - 7uNT) x e do
. ne At ne h X]
Vi Y .. /pn+o 0 o +
+ [y NN/ (’T +gnt + R )da

(5-15)

inJj X" =X i e\n+a i n+o
@+ | [Jope VaN N do | =20 1 [ [ 7, NE((UO)™ - 7N )do] x;

Ze Sleyo] =0

+[fpe VaNiNTdo| Q)+
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)n+9

where (U® is the average convective velocity within the element, and (U®)"** = ¥, NkeUf(’:“.

Reordering terms:

: ie N Je he(l/]\e)nw ie N Je n+1
Vi Ze,ie.je fneNl Nledo +2(UAe—)nw|fﬂevth Nle do X
NieNje d he(ﬁ\e)n*-g v NieNje d n _
_Ze,ie,je f_Qe O—+2(179—ane h olxj =
(5-16)
—\n+6
. . he Ue . .
—At Yoo | oo N (NKURH? - 7y NTe) do + Z((ﬁe—))nﬂfﬂe VpN'e(N*eUR+o - 7, NJe) da] xje
ie N Je he(ﬁé)n-'-g ie N Je n+6
—At Yo | [oe NieNe do +2(ﬁe—)n+e|fﬂe VuNieNJe do| Q]
In matrix form:
(-4 B3y )+ + (@ + E5ify o™ = .
(M + M%E ) x™ — A(C0 + Chto ) (1 — 0)x" + (M + ML, ) Qe
where:
1‘=4 = Ze,ie:je fﬂeNieNje do
Vin+o he(0%)"" e
M?Jpg = Ze,ie,je z(UAe—)"W’fne VyN'eNJe do
(5-18)

€0 = Feipge Jpe NI(N*URY? - 7uNJe)

he(l/]\e)n+9

??Jgg = Ze,ie,je [2 f_Qe |7hNie (Nke U;clze ’ Vthe) dO‘]

Following the same procedure as for the convection-reaction equation, the dynamic boundary condition

becomes:
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(M + M%)+ + At(C*0 + Ctf )+t =
I - - I (5-19)
(B + M35, ) 9" — AL(C0 + Tty ) (1 — 0)9p™ — (M + ML) (S P™7 + gn™*® + R™7)

And following the same procedure as for the convection-reaction equation, the kinematic boundary

condition becomes:

(M + M5 m™+ + At(C™0 + Cnrd Yo+t =

(M + IT/I?JPQQ)I]H — At(C™*0 + f‘?Jfg)(l — )"

(5-20)
= = 1
+(M + M3, (; 7o — Sn+9)
The associated matrix form to the finite element formulation for the governing equations is:
L*¢p = b% + b? + bR (5-21)

where L* is the standard laplacian matrix modified to account for the left hand side of Eq. (5-19), bZ0 is
a vector accounting for the right hand side of Eq. (5-19), and b® and bR are the vectors resulting of
integrating the corresponding boundary condition terms.

All the numerical models for the wave diffraction-radiation problem implemented in SeaFEM are based

on [1] and [20].
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6. HYDRODYNAMIC LOADS ON BODIES (PARTIl)

6.1 Glossary

¢ | Velocity potential

Free surface elevation

Naai

¢ | Difraction-radiation velocity potential

¢PB | Double body diffraction-radiation velocity potential

&' | First order body displacements

6! | First order body rotations

F! | First order hydrodynamic forces

K, | Hydrostatic restoring matrix

M* | First order hydrodynamic moments

n, | Initial body surface normal vector at point P

Py | First order pressure at point P

1, | First order body surface displacement at point P

S9 | Initial body boundary

S% | Initial transom stern boundary

U | Convective velocity

U, | Body translational velocity

x; | Coordinates of body center of gravity

6.2 Firstorder loads

Hydrodynamic forces and moments are obtained from direct pressure integration over the body surface.

The body gravity center will be used as a reference for body movements and moments acting on it.

Fl = f Pind ds — j Pingds = FY + Fl + Fb + Fhs (6-1)
sg Sts

W= [ B xmyds [ Bi(romn) xmds = My + M+ Wb+ Ml (o)
s STs

where sub-index H stands for hydrostatic loads, D stands for dynamic loads, and TS for transom stern.
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6.3 Hydrostatic loads

The hydrostatic loads are split as follows:

F) = —f pgznp ds = pgV (6-3)
Sk

MY = —f pgzG°P° x nj ds (6-4)
Sk

F} = —f pgrmdds = K6 (6-3)
Sk

(6-6)

M} = —j pgr,G°PY x nds = K,6"
SB

where V is the body displacement, and K}, is the hydrostatic restoring matrix (defined in section 3.2).

6.4 Dynamic loads

The dynamic loads are computed as:

do 6-7
F})=—j0p<E+U-Vh<p+Q>ngds (6-7)
SB

M%):—f
S

where U and Q depends on the flow approximation used (Table 2).

0 - -
p(a—q;+U-Vh<p+Q)GOP°xngds ©-8)

0
B

Table 2: values of U and Q (see section 4.5)
Flow type U Q

Kelvin U, 0

1
Double body | Uy, + VP8 | — EvhquthquB

) 1
Non-linear Up + Vo — Evhd) VN

6.5 Transom stern added resistance

If a transom stern is defined, no hydrodynamic pressure will exist on the transom surface. However,

since hydrostatic and dynamic loads are calculated integrating on the initial wet surface of the body, S9
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and the transom stern surface is included S9g C S§, imposing a zero pressure on the transom stern is
equivalent to adding the corresponding negative pressure. Then, integrating over S%, the loads obtained

can be seen as added resistance due to the lack of hydrostatic and dynamic pressure.

Fhg=— f By ds (6-9)
S

TS

Mig = —f P}(xg—x,) X nSds (6-10)
s

0
TS
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/. BODY DYNAMICS

7.1 Glossary

Body mass

Body instantaneous inertia matrix respect to local frame

Multibody mass matrix

Hydrostatic restoring matrix of the multi-body system

Vector containing the six degrees movements of the multi-body system

Vector containing the six degrees velocities of the multi-body system

o R TS

Vector containing the six degrees accelerations of the multi-body system

»

Body displacement vector
Body rotation vector
F  Vector containing external loads on the multi-body system

f,  Vector containing external forces on the i™ body

m; Vector containing external moments on the i body

a  Alpha modified Bossak-Newmark scheme coefficient
B Bossak-Newmark beta coefficient

y  Bossak-Newmark gamma coefficient

A Jacobian matrix of body links

7.2 Dynamic equations (small rotations)

Integrating the pressure over the bodies’ surface, the resulting forces and moments are obtained. On the

other hand, the body dynamics is given by the equation of motion:

MX+EKX=F (7-1)
SeaFEM uses an implicit alpha modified Bossak-Newmark s algorithm [2]:

(1 — a)XE + aX® = M~ (F™! — KX™*1) (7-2)
XPH = XP + A1 — yXE + yXE] (7-3)

-43 -



SeaFem Theory Manual

At?
XML = X"+ ALXY + —=[(1 - 2B)XE + 28X (7-4)

In the above integration algorithm, a is the parameter defining the numerical damping added in the
integration. This damping creates a desirable stabilizing effect in the body dynamics integration. a is
usually set to between 0 (no damping) and -0.1. In SeaFEM, y and J are calculated as y= 0.5- a and
£=0.5y +0.025a.

7.3 Dynamic equations (large rotations)

In case large rotations are expected, the Euler equations are used to integrate the body dynamics. Each
body accelerations are solved respect to a local frame of reference attached to the gravity center of the

body, and with axis parallel to the global frame of reference.

time=0

Local frame time=0

)

/ Global frame

Figure 6: Global and local frame of reference used in SeaFEM

The dynamic equations for each body are the Newton’s and Euler’s equations:
Mi)'il- = fi (7-5)
iii:i =m; — ‘i‘i A (il : rl) (7-6)

where I; is the instantaneous inertia tensor of body i respect to the local frame. The Euler equations are

derived in a rotating reference frame fixed to the body, and therefore, the inertia has to be updated.
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It is important to remark that, in equation (7-6), F and M must be evaluated in the local reference frame.
7.4 Body links

7.4.1 Lagrange multipliers

Let a multibody system be defined by the dynamics equations:

MX¢ = F! (7-7)
Let the body-links to be defined by nonlinear equations of the following type:
fiXH) = filX1, X3, ..., Xi) = by (7-8)

where x]-t is the vector representing the position of all and each body of the multibody system, and b; is a

constant value. The latter will be brought into the system dynamics via Lagrange multipliers. To do so,

body-links must be linearized. The following linearization is used:

af- tk
k k k k kY
G G & )+Zj <6_x:> (XERH — XEK) = b, (7-9)

in vector form:
(Vfi)t,k . Xt,k+1 — bi _ fi(xt,k) + (Vfi)t,k . Xt,k (7_10)

where k is the k-th iteration of the iterative resolution of the dynamic system. The previous linearization
ensures that as || X“% — X0k+1|| > 0 = £,(X4%*1) - b; and the bodylink is fulfilled.

We use an alpha Bossak-Newmark scheme as a temporal integrator scheme for the dynamic equations.

t+Atk+1
j

. . L t+Atk+1
depend linearly on accelerations X; as follows:

Positions x ]
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. At? ; .
Xbk+1 — xt-At 4 ApgE-At 4 7((1 — 2B)KE-At 4 28Xt,k+1)

Introducing the Newmark scheme into the linearized bodylink:

(VAL (xf—“ + AEXETA 4 A2 ((0.5 — BXLEH 4 gxt—At)>

= by = fi(X%) + (V) - Xk
The previous equation can be written as:

1
At?pB

(VA - RO = (b = Fi(X9) + (V) - XEH) -

_(Vfi)t'k'<At2ﬁ+ g T g

Or after reordering terms:

(VU Xkt = — (by = (X9 J+(Tf) o - Kok

At?B

The set of linearized bodylinks can be written as:
tkyptk+l _  tk
Z,- ay X]- =

where AbK = [agl’-k] is the Jacobian matrix

tk
a?’.k = %

y ax]
and ct* = [c/"]:
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ﬁ

XAt XA (05— B)
tk tkytk tk [ j . 5 t—At )

or

ctk = At2 5 b= ] + Ejag."j(ﬁk (7-18)

Then, the imposition of nonlinear bodylinks via Lagrange multipliers can be carried out as follows:

gtk+1 Ftk
[At k+1] = [Ct,k] (7-19)

lM (A7)

ALk 0

Finally, reaction forces are obtained from:
=tk
REK = _(AT) Atk (7-20)

and since matrix contains the instantaneous normal direction to the trajectory imposed by the body-links,

reaction forces act perpendicular to the imposed trajectories.

7.4.2 Body links with Alpha Bossak-Newmark integration

The alpha Bossak-Newmark scheme uses the following scheme to obtain the acceleration at time t:

(1 — )MX! + aMXt~2t = Ft 4 R¢ (7-21)
where Rt = —AT A are the reaction forces due to bodylinks. Then:
M(1 — )kt + ATAt = Ft — aMx!At (7-22)
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Introducing the body link constraints AX* = ¢, the multibody dynamic system reads as:

Fg] [(1 —/1 ;x)x‘] _ [Ft(I gfg(i)t;“] (7-23)

= =l

7.5 Body dynamics iterative solver

The dynamic solver is implemented in SeaFEM by means of three nested loops. A relaxation algorithm

based on the Aitken’s method [6] is used to speed up convergence within each loop.

7.5.1 Time marching loop

The time marching loop is the outer loop marching in time. Information from the previous time step is

used as initial guests of the iterative procedure.

7.5.2 Solver loop

The solver loop is where the hydrodynamic loads are calculated. In each iteration within this loop, the
linear system corresponding to the wave diffraction-radiation problem is to be solved. Iterations is
carried out until convergence of hydrodynamic loads along with body kinematics is reached.

Should non-linear mooring lines be defined, stiffness linearization will be carried out for each iteration,

and the updated stiffness matrix will be passed on to the body dynamics loop.

7.5.3 Body dynamics loop

The body dynamics loop is the inner loop. Within this loop, wave diffraction and radiation loads remain
unchanged, hydrostatic forces are updated based on body position, and the rest of loads will be updated

in each iteration.
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Figure 7: Scheme of the dynamic integration solver of SeaFEM

- 49 -



8. STATISTICAL DESCRIPTION OF WAVES

8.1 Glossary

S(w,a)  Two dimensional wave energy density distribution

A Wave amplitude
T Wave period
W Wave angular frequency
k Wave number
a Wave direction
n Wave elevation
1) Wave phase
H Water depth
Hg Significant wave height
T Mean wave period
T, is the peak wave period
my, Zero order moment of wave energy distribution
m; First order moment of wave energy distribution

8.2 Spectrum discretization

Let be S(w, @) an energy density spectrum describing a sea state in terms of the wave frequency and
direction of propagation. The discretization procedure to obtain a stationary and ergodic realization
based on monochromatic waves is as follows:

Let be @, the minimum frequency to be considered, ,,, the maximum frequency to be considered,

max

o, the lower direction of propagation to be considered, «, , the larger direction of propagation to be

considered, N" the number of wave frequencies, and N“the number of wave directions to be

considered. Then, the frequency and direction discretization sizes are given by:

_ (wmax B wmin)
= N

Aw

(8-1)
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Ao = (amax - amin)
(N*—1)

then, the wave elevation is given by:

N% N%

n= Z ZAU COS(ki]'COS(aj)x + kijsin(a]-) - .Ql]t + 611) (8-2)

i=1 j=1

where ();;is the wave angular velocity and a random variable with uniform distribution in within

Aw Aw
PRy

[w; —=

|, w; = Wi + (0 — 1/2)Aw, @ = apin + (j — 1Aa, §,is a random variable with

uniform distribution in [0, 27[], ¢ represents time, and x, y are the horizontal Cartesian coordinates. The

wave number is obtained from the dispersion relationship:
.Qzl'j = gkijtanh (kUH) (8-3)
and the wave amplitude is calculated from the wave energy distribution as:

1,
16 1is

Xim \/2AwAa S(wy, amy)

(8-4)

Ajj = J 20wha S(w;, a))

where Hg =4./m, is the significant wave height, and m, = J J S(w,a)dwdais zero order moment of
0 -7

the spectrum wave energy.

8.3 Convergence

Convergence of the discretized spectrum will happen as o, =0, ® —>»©, Aw >0, ., —0,
a . —2r,andAa — 0. The rate of convergence with Aw and A « is that of the rectangle rule of

max

numerical integration.
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8.4 Spectral moments

8.4.1 Zero order moment

The spectral energy of a wave spectrum is given by: mg = [ Ooo ffnS (w, @) dwda = % pg HZ . Then, the

discrete spectrum is scaled such that the spectral moment m, is conserved. Therefore:

12_1 2

—A;=—H, -
2 y 16 N (8 5)

i,j

8.4.2 First order moment

The first order moment of the discrete spectrum is:

m; = z 5(0)1.' aj)Qi,jAwA(x = Z S(wi, aj)mi,jAa)Aa + z S(a)l-, aj)ei,jAa)Aa (8-6)
ij Lj ij

where ¢;is uniform distributed between [—ACO/ 2,Aw/ 2], XijS (wi, oc]-)wl-,]-AwAa i1s a deterministic

component of the first moment, and Y; ; S (wi, aj)ei‘ jAwAa is a random component. Assuming that

o, %, 0.=0,a.=0,a =2r,thedeterministic component converges to:

Aw—-0
Aa—-0 i,j

o Y

lim S(wi, oc]-)wl-,]-AwAa = j f wS(w,a) doda (8-7)
0 -1

On the other hand, for large values of N, the probabilistic component is a random variable with normal

distribution. The mean p and variance 62 of this distribution are:

Aw/2 1

U= Z S(w;, aj)AwAaf wmdw (8-8)
o -Aw/2
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Aw/2
1 Aw?
0% = Z S(w;, a;)AwAa w?—dw = Z S(w;, @) Awha — (8-9)
— Aw - 12
L] —AQ)/Z L]

The probabilistic component converges to a random variable with zero mean and zero variance.
8.5 Wave spectrums

8.5.1 Pearson Moskowitz

This is probably the simplest idealized spectrum, obtained by assuming a fully developed sea state,

generated by wind blowing steadily for a long time over a large area [3]. The resulting spectrum was [4]:
S(T) = H2T,,(0.11/27) (T, /T) S e~ 0-44Tm/T)~* (8-10)

where T,,, = 2mm,/m,, with my and m, the zero and first moments of the wave spectrum.

8.5.2 Jonswap

The JONSWAP spectrum was established during a joint research project, the "JOint North Sea WAve
Project" [5]. This is a peak-enhanced Pierson-Moskowitz spectrum given on the form:

5 TS _ Tp —4

S(T) = (—H2—> vt h) (1 -0.287log (¢))

s

y = e-l15%T, ~1)/(ovD)|*
where w = 27n/T, 0 = 0.07 for w < 6.28/T),, 0 = 0.09 for w > 6.28/T,, T is the wave period; Hy is
the significant wave height, T, is the peak wave period and € is the peakedness parameter.

An alternative definition of the JONSWAP spectrum is given by [4]:

155H2

T w®°

S(w) = ( > . 3.3Y . @ 94T 07" (8-12)
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y = e-[01916T7/(0vD)]"

where 0 = 0.07 for w < 5.24/T,,, 0 = 0.09 for w > 5.24/T,,,, T,,, = 2mmy/m;.

8.5.3 White noise

The white noise spectrum corresponds to a uniform energy distribution within a wave frequency
interval, having zero energy outside the prescribed interval. This type of spectrum is used in SeaFEM to

carry out Response amplitude operators (RAOs) analyses (see section 11).
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9.1

9. MOORING

Glossary

Elastic catenary formulation

X,z

Horizontal and vertical positions measured from the lower cable point
Catenary arc length

Horizontal component of the cable tension

Catenary weight per unit length in water (i.e. minus buoyancy)

Vertical component of the cable tension

Total length of the catenary

Horizontal component of the effective tension in the mooring line at the fairlead
Vertical component of the effective tension in the mooring line at the fairlead
Horizontal component of the effective tension in the mooring line at the anchor
Vertical component of the effective tension in the mooring line at the anchor
Young’s modulus of the mooring line

Cross section area of the mooring segment

Horizontal and vertical coordinates of the fairlead point relative to the anchor
Static friction coefficient

Length of the cable’s portion resting at the seabed

Dynamic cables formulation

X

S S TNV T A

Vector of nodal translational degrees of freedom
Vector of external loads

Inertia matrix

Added mass matrix

Pretension vector in the initial configuration
Vector of nodal internal forces of the cable
Damping matrix

Material stiffness matrix

Geometric stiffness matrix

Elemental material stiffness matrix
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Elemental geometric stiffness matrix
Truss element strain

Element volume

Axial stress

Axial elastic modulus

Elemental inertia matrix

Elemental added mass matrix

Section area of the cable

Added mass coefficient

Damping ratio corresponding to the natural frequency of the structure
Natural frequency of the structure
Weight force

Buoyancy force

Drag force related to currents

Force due to the seabed interaction
Drag force due to waves

Cable density

Water density

Characteristic diameter of the element
Normal drag coefficient

Tangential drag coefficient

Velocity relative to the element

Time step

Parameter related with Bossak-Newmark implicit algorithm

Parameters related to Newmark time integration scheme

9.2 Mooring system modelling

SeaFEM can handle complex mooring systems made up of various mooring lines attached to the floating
structure. Each mooring line can be in turn composed of various segments each one resembling a chain,
a steel cable or even a synthetic fiber. Forces resulting from the action of buoys and sinkers acting at the

junctions between mooring line segments can also be considered. Hence, SeaFEM can deal with a wide

variety of multi-segmented mooring line systems.

Cable tensions depend on the buoyancy and lateral displacements of the floating structure, the cable

weight in water, the elasticity in the cable and the geometrical layout of the mooring system. Hence, as
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the floating structure moves in response to unsteady environmental loadings, the mooring restraining
forces change with the changing cable tension. This means that the mooring system has an effective
compliance whose response is in general non-linear. Within SeaFEM, mooring inertia and damping are
ignored, but the non-linear response is accounted for in the mooring system dynamics.

Mooring systems within SeaFEM are solved using a quasi-static approach in the sense that at any step of
the calculation, and once the floating body displacements are known, the mooring system solver
calculates the tensions and the geometrical configuration of each mooring line segment assuming that
each cable is in static equilibrium at that instant. The mooring loads resulting from the calculation are
added to the total load acting on the floating body, and the resulting dynamic equations of motion of the
structure are solved again until convergence. At each time step the implicit non-linear system of
equations describing the mooring system is solved using a classical Newton-Raphson scheme.

The formulation implemented within SeaFEM for dealing with catenary based mooring systems is
outlined in what follows. Additionally, cables behaving as springs (both in tension and/or compression)

can also be modeled.

9.2.1 Catenary equations

In a local coordinate system with its origin located at the lower cable point, the mooring equations for

the catenary read as follows:

z= (%)cosh(%x+a>+ﬁ (9-1)
s= (%) sinh (T%x + a) +y (9-2)

where z is the vertical position, s is the catenary arc length, w is the catenary weight per unit length in
water, and T, is the horizontal component of the cable tension which is constant everywhere. If the

conditions z(x = 0) = 0 and s(x = 0) = 0 are applied, the equations result to be:

z = (%) [cosh (T%x + a) — cosh (0()] (9-3)
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—(TO)['h<w +a) = sinh 9.4
s=(7)|sin Tox a ) — sinh (a) (9-4)

The action of any part of the line upon its neighbor is purely tangential, and the tangential direction can

be written as:

rang = % = 'h(‘” + ) 9.5
an —dx—Sln Tox a (-)

The equilibrium equations can be written as:

Taown * €0S8g0wn = Typ - €050y, =T, (9-6)
Tup . Sineup = Taown * SinBgoyn = w - L

From the horizontal component of the tension at any point of the catenary, it is possible to write the

modulus of the cable tension at any point of the catenary as:

T W
T=—2-=T,- (\/ 1+ tan29) =T, - cosh (T—x + 0() 9-7)

cos6 o

Hence, the vertical component of tension at any point of the catenary can be written as:

)
T, =T -sin@ =T, -sinh <T—x + a) (9-8)

o

In particular, at the upper and bottom vertex of the catenary above equation reads, respectively:

w
Tyup =T, - Sinh (T—l + a) (9-9)

o

Ty down = T, - sinh(a) (9-10)

and the vertical equilibrium equation will result in:
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L= (E) (sinh (Tﬁl + a) _ sinh (a)) —s(x=1) (O-11)

w

For a given length of the catenary (L) and for given horizontal and vertical distances (I, h) between the
initial and end points of the catenary, it is possible to solve the equations by using a classical Newton-
Raphson iterative process.

If the catenary has a seabed contact in its lower point, the following condition must be added

dz

- = -12
dxly—g 0 (9-12)

and the catenary equations result in:

o= (@) for(0)-1
- () fam ()

(9-13)

9.2.2 Elastic catenary formulation

The elastic catenary formulation used within SeaFEM 1is similar to that presented in [6]. Each mooring
line is analyzed in a local coordinate system that originates at the anchor. The local z-axis of this
coordinate system is vertical and the local x-axis is directed horizontally from the anchor to the
instantaneous position of the fairlead. When the mooring system module is called for a given structure
displacement, SeaFEM first transforms each fairlead position from the global frame to this local system

to determine its location relative to the anchor, xf and z.
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Hp

Fairlead

A

Va

Ha o

»

v

Anchor

Figure 8: Catenary system of reference.

In the local coordinate system, the analytical formulation is given in terms of two nonlinear equations in
two unknowns—the unknowns are the horizontal and vertical components of the effective tension in the

mooring line at the fairlead, Hr and Vg, respectively.

Hr Ve Ve —wl\?| 1 wl?
ZF(HF, VF) = X 1+ (H—F> - |1+ (H—p) +ﬂ VFL - T (9-14)

The analytical formulation of two equations in two unknowns is different when a portion of the mooring

line adjacent to the anchor rests on the seabed:

Ve Hp |Ve V2

He, Vi) =L ——+—In|— /1 (—)
xF(F F) a)+a)an +HF
2 v,

HpL
"4

Cpw v, H Ve H

+ 2 —(L—;F) +<L——F——F)MAX<L——F——F,o)l

2EA

Hr Ve Ve — wlg 1 wl?
Hep, Vi) =—]| |1 (—)— 1 (—) —(VpLy ——=
zp(Hp, Vi) > \/ + H, \/ + H, +EA Fhs ——

Ly =L VFL—L L
B — wis_ B

(9-15)
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The last term on the right-hand side of the xr equation above, which involves Cg, corresponds to the
stretched portion of the mooring line resting on the seabed that is affected by static friction. The seabed
static friction was modeled simply as a drag force per unit length. The MAX function is needed to handle
cases with and without tension at the anchor. Specifically, the resultant is zero when the anchor tension
is positive; that is, the seabed friction is too weak to overcome the horizontal tension in the mooring line.
Conversely, the resultant of the MAX function is nonzero when the anchor tension is zero. This happens
when a section of cable lying on the seabed is long enough to ensure that the seabed friction entirely
overcomes the horizontal tension in the mooring line. These equations consider that slack catenary is
always tangent to the seabed at the point of touchdown.

The mooring system module uses a Newton-Raphson iteration scheme to solve nonlinear for the fairlead
effective tension (Hg and Vg), given the line properties (L, w, EA, and Cg) and the fairlead position
relative to the anchor (xr and zg). The mooring system module uses the values of Hr and Vg from the
previous time step as the initial guess in the next iteration of the Newton-Raphson scheme. As the model

is being initialized, the following starting values, Hp and V;, are used [7]:

0_ WXg
F= 122,

VR = w[ i +L]
F=2 ltanh(2,)

(9-16)

where the dimensionless catenary parameter, 1), depends on the initial configuration of the mooring line:

( 1000000 for xg =0

0.2 for ’xﬁ+z§ > L
Ao = 1 (9-17)

1?2 — 7%
3I|l————-1 otherwise
\

2
XEp

Once the effective tension at the fairlead has been found, determining the horizontal and vertical
components of the effective tension in the mooring line at the anchor, H4 and V,, respectively, is simple.

From a balance of external forces on a mooring line, one can easily verify that
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H,=H
AT (9-18)
VA = VF — wlL
When no portion of the line rests on the seabed, and
HA = MAX(HF - CBOJLB, 0)
Va=0 (9-19)
Ve
Lp=L——
5 W

The mooring system module solves the configuration of, and effective tensions within, the mooring line.
When no portion of the mooring line rests on the seabed, the equations for the horizontal and vertical
distances between the anchor and a given point on the line, x and z, and the equation for the effective

tension in the line at that point, Te, are as follows:

Hp Vi + ws Vi + ws\? V, Va2 Hps
=) + 1+( ) —n| A+ 1+(—) 4ok
x() =5 I [ — j H, ", H, EA

Hp Vi + ws\* A% B! ws? (9-20)
Z@_ZJH( + )_jH(H_F) (e

T(s) = \/Hﬁ + (V4 + ws)?

where s is the unstretched arc distance along the mooring line from the anchor to the given point.

The equations with seabed interaction are:
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( for0<s<L Hr
S or S _— -
=T =B Cgw
Hp
2 _ -
CB_(U S 2<LB CB(U)S-I_ , _£< _,
2EA (ko - HF>max(L _ Hp 0) Jorte =g =o=te
.X'(S)=< B CB(D B CB(U’
2
H w(s—1L w(s—1L HpL
Ly +—In (H—B)+\/1+< (H B)> + Eil
@ F F forlg <s<lL
+220 @ 2+<L ——) (L ——,o)] (9-21)
\ 2EA[ (L5) BT o) B T

0 for0<s<lLp

2 2
2(s) = {(% jl N (“’(5 _LB)_) B Gl Y

H; 2EA

MAX(Hp + Cgw (s — Lg),0)

s \/Hﬁ +(w(s—Lp))" forly<s<lL

The final calculation is a computation of the total load on the system from the contribution of all
mooring lines. This mooring system-restoring load is found by first transforming each fairlead tension
from its local mooring line coordinate system to the global frame, then summing up the tensions from all

lines.

9.2.3 Dynamic cable formulation

SeaFEM includes a finite element model (FEM) for solving mooring line dynamics. For this purpose,
the line is divided into a series of straight segments modeled by nonlinear truss elements, with three
translational degrees of freedom per node. Lagrangian formulation is used to describe the dynamics of

the mooring line.
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Free surface

currents

x

s Seabed Node j—1

Figure 9: Scheme of the FEM cable model.

Applying FEM formulation to this nonlinear elastodynamics problem, the equations of the dynamics of

the line can be written as follows:
(ﬁlt+dt + ﬁ[}:dt)x + Ct+dtg 4 pO 4 Rt+dt — pt+dt (9-22)

where x is the vector of nodal translational degrees of freedom, F the vector of external loads, M the
inertia matrix of the line, M A the added mass matrix, P° is the pretension vector in the initial
configuration, and R, the vector of internal forces of the cable. Damping effects of mooring cable can be
inserted through a Rayleigh-type damping matrix C.

Considering the standard linearization of the internal forces, above equations can be expressed as:
(ﬁlt+dt + lvlffdt))'i + Ctrdtg 4 po 4 (ﬁt+dt + ﬁtG+dt)8X + Rt = FtHdt (9-23)
where K and ﬁG are the so called material stiffness matrix and geometric stiffness matrix, respectively

[7]. The corresponding elemental material stiffness matrix i{e, and geometric stiffness matrix, k& , can

be obtained in terms of the strain of the truss element, e:
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- - 0 de de _ de d%e
ke + K¢ = —(ves—) =VE —® —+ Ves— (9-24)
X 0x — 0x 0x>2

where V€ is the volume of the element, s the axial stress and E the axial elastic modulus. The FEM

allows calculating those matrixes as follows [8]

ke = VeE o ® o¢ _ fleBTVeEB d
N ox = 0x 0 0 oS
(9-25)
_ aze le :
k(e; = Vefm = ,[0 Bl SBI ds
The elemental inertia matrixes are evaluated as:
le= _
m¢ = j NTpNds (9-26)
0
and the added mass matrix is calculated as
le= _
m,® = pACmf NTN ds (9-27)
0

In the above equations, N is the general matrix of shape functions [8], A is the section area of the cable,
and Cp, is the added mass coefficient. Finally, the damping matrix is evaluated using the Rayleigh
formulation:

C=a,K+a,M (9-28)

The coefficients a4, a, can be calculated as:

= %(1—1 +a,0;) (9-29)

1

- 65 -



SeaFem Theory Manual

where (; is the damping ratio corresponding to the natural frequency w; of the structure. The external

forces vector is evaluated by assembling the contribution of the different forces acting on the element:
F¢ =F, + FS + F§ + F¢ + F§ (9-30)

where F§, is the weight, Ff is the buoyancy force, F§ is the drag force related to the currents, FF is the
force due to the seabed interaction and F§ is the drag force due to the waves. The weight and buoyancy

force are calculated as follows

le
m+ﬁ=]$m@,
0

(9-31)
w(pc — Pa)

e —=f f,, =
wh W+h g(1+e)pc

where p. is the density of the cable, p, is the water density, w weight per meter and e the strain of the

considered element. On the other hand, the drag force acting on the element, is evaluated as

le
ﬁ+m=fﬁﬁm
° (9-32)

le

le
1 1
fe =j ~0Coc DIVEIU ds+f 5 9Con DIUEIUS ds
0 0

where D is the characteristic diameter of the element, Cp, and Cp, the normal and tangential drag
coefficients and Uf is the velocity relative to the element. The seabed interaction is modeled with the

spring and normal and tangential damping terms given by:
le _ le _ le _
Ff = j frsN ds + j f$,N ds + f N ds (9-33)
0 0 0

where the vertical forces per unit length, due to the stiffness of the seabed fg,s, are expressed as
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(9-34)

ms

. fiwl i Ke[z, — (z2)¥9] < fiwl
- Ke[z, — z®)T9] | if Ke[z, — (z®)9] > fiwl

where z€ is the vertical coordinate of the corresponding node, 1 is the length of the cable associated to
the node, and fj is a coefficient of the model. K is the coefficient of the seabed normal stiffness force

which has the magnitude:
Kf = Gle (9_35)

where D is the diameter of the line, and Gy is the ground normal stiffness per unit length. The term z, is

then evaluated as:
Zp = Zi + —= (9-36)

The seabed damping forces are applied in the normal and tangential directions. The normal damping
force is only applied when the penetrating object is travelling into the seabed. It is applied in the seabed

outwards direction and has a magnitude given by:

D,z® ,ifz¢<0

e __ -
fdn_{ 0 ,ifz°>=0 ©-37)
and Dy, is formulated as a fraction, G, of the critical damping

wle
D, =20 Gc\/Gk (?> (DIe) (9-38)

Finally, the tangential damping force is again evaluated as a fraction, G, of the critical damping, and is

applied in the direction opposing the tangential component of the velocity of the penetrator:

f2 = Dyie (9-39)

-67 -



SeaFem Theory Manual

wle
D, = 2,0 Gc\/Gk <?) (Dle)

An implicit time integration scheme based on called Bossak-Newmark method [2] is applied to solve the

system. It will lead to a system of algebraic equations to be solved in iterative manner:

[(1 _ 0()(1\=/lt+dt'i + ﬁ[;c:dt,i) + dtyét*'dt'i + dtzs(ﬁwdt,i + ﬁgdt’i)])’i”dt’i“
— dtzs(ﬁwdt,i + ﬁgdt'i)XHdt’i + Ft+dt,i — PO+ Rt — Et+dt,i [Xt _ dt(y + 1)xt] (9_40)

_ a(ﬁ[tmt,i + lvllt:dt’i)it

where dt is time step, i denotes iteration, a is a parameter related with Bossak-Newmark implicit
method, and y and  are parameters related to Newmark time integration scheme. Finally, the new

position and velocity of each node can be evaluated as:

dt?
XAt = xt 4 dext + —[(1 — 2B) &kt + 2B xt+dt
> [( B) B | (9-41)

Xt+At — Xt + dt[(l _ y) ')'(t + yXt+dt]

The dynamic cable solver is integrated within SeaFEM dynamic solver. The scheme of the dynamics
solver is presented in the section 7. In order to accelerate the scheme, the mooring forces are linearized
within the body dynamics group, by evaluating the stiffness matrix Ky of the line. A detailed

description of the FEM cable model implemented in SeaFEM can be found in [9].
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10. FORCES ON SLENDER ELEMENTS

10.1 Glossary

l Unit vector denoting the local orientation of a long slender structural element
v Relative fluid velocity vector

a Relative acceleration of the submerged body
a® Acceleration vector of any point of the body

a" Fluid acceleration of the incident wave

F Force per unit length on a slender cylindrical element
Fu Inertia force per unit length

F. Lift force per unit length

Fp Drag force per unit length

Fy Linear drag force per unit length
Fr Friction force per unit length
D Characteristic linear dimension (the diameter in the case of a cylinder)

Cross section area
Cm Added mass coefficient
Cp Non-linear drag coefficient
Cy Linear drag coefficient
Cr Friction coefficient

Cy Lift coefficient

10.2 Forces on slender elements

When viscous effects may be advanced to have a significant effect on the dynamic behavior of an
offshore structure, Morison's equation can be used to evaluate wave loads on slender elements of the
structure [9, 10, 11]. In SeaFEM, force corrections due to viscous effects can be also taken into account
by using the Morison's equation. For this purpose, an auxiliary framework structure, associated to a
body must be defined. See the SeaFEM user manual for details on how to define the auxiliary

framework structure elements using the Tcl interface of SeaFEM.
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Based on the information provided by the user, SeaFEM evaluates Morison's forces per unit length
acting on the framework structure. After integration along the different elements, the resultant forces are
incorporated to the dynamic solver of the rigid body to which the idealized framework structure has
been associated. It is useful to write the Morison’s equation in a vectorial formulation that automatically
takes into account the actual orientation of structural elements and force components.

Considering a segment of a long slender structural element submerged into water its local orientation is

given by a unit vector
I=1i+mj+nk (10-1)

being I, m, n the directional cosines and (1, j, k) the unit vectors of the global coordinate system.
Similarly, the relative fluid velocity vector and the relative acceleration vector of the submerged body

are given by:

vV =V +vyj+ vk
(10-2)
a=a"—aP=ai+a,j+ak

The relative fluid velocity vector and the relative acceleration vector are evaluated based on the
undisturbed wave potential equations.
The force per unit length on a slender cylindrical element may be written as the sum of inertia, drag,

friction and lift forces:
F=FM+FD+FV+FF+FL (10-3)

where the inertia force Fy; is oriented along the acceleration vector component normal to the element
member, and its magnitude is proportional to the acceleration component. Lift force F; is oriented
normal to the velocity vector and normal to the axis of the element, and its magnitude is proportional the
velocity squared. Drag force Fp is proportional to the squared velocity component normal to the element
and normal to the lift force, while the linear drag force Fy is proportional to the velocity component

normal to the element. Finally, friction force Fg is aligned along the axis of the element and proportional
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to the squared velocity components tangential to the element axis. All these are satisfied if the various

force components are defined as follows:

Fy = (1 —68,)(1 + Cy)pSUA x a¥ x 1) — pSCy(1x aP x 1)

1
Fp =ECDpD|l><v><l|(l><v><l)

1
Fy = ECVPD(] xvxl (10-4)

1

1
F, = ECLPD“ X v[(1X V)

where D is a linear dimension (the diameter in the case of a cylinder), S is the cross section area, Cy is
the added mass coefficient, Cp is the non-linear drag coefficient, Cy is the linear drag coefficient, Cr is
the friction coefficient, Cp is the lift coefficient, and &, takes the value 1 for virtual elements and 0
otherwise.

Remark: The first term in the right hand side of the Fy equation, includes the Froude-Kriloff force (i.e.
undisturbed wave pressure force) and the diffraction inertial force, while the second term represents the
radiation inertial force.

Remark: Note that while Cy;, Cp, Cg, C, are non-dimensional coefficients, Cy has dimensions of velocity.
As stated above, Egs. (10-1) - (10-4) can estimate the different components of the force per unit length
on a long (slender) structural element. Therefore, they can be integrated along the element axis, to obtain

the additional forces an moments acting on the centre of gravity of the associated body.
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11. RESPONSE AMPLITUDE OPERATORS

(RAOs)

11.1 Glossary

N"  Number of waves involved in the white noise spectrum for RAOs analysis
Tpin  Minimum period for RAOs analysis
Tpax  Maximum period for RAOs analysis

Af Frequency increment of the analysis

fa Discrete frequencies of the analysis

At Time step

T Total calculation time

11.2 Response amplitude operators (RAOs)

RAOs are transfer functions of the relation between the wave exciting forces and ship movements, used
to determine the effect that a sea state will have upon the motion of a ship through the water.Calculation

of Response Amplitude Operators (RAOs) in SeaFEM is done by analyzing the time series response of
the ship, using a discretized white noise spectrum. This spectrum is defined by a number NV = 2M~1 of
waves of equal amplitude and periods varying between the maximum and minimum values defined by
the user. The values of these NV periods are selected to match the discrete Fourier transform of the

output signal, given by:

NW-1

— Z Xy - e—iZT[Af*l’l (11_1)

n=0

Given Ty, and Ty, ax, the minimum and maximum periods of the analysis, the frequency increment is:
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1 1
AF = (Emax — fin) /(N = 1) = (5 )/ -1y (112)

min max

The well-known Fast Fourier Transform algorithms give a procedure to obtain an exact evaluation of the
transfer functions defined above. This way, the time step and the total computing time are internally
fixed to match the required sampling time and total sampling points. Then, the holding frequency Af* is

evaluated as

Af* = min(Af, f ;) (11-3)
And the discrete frequencies are:

f,, =n-Af n=0,1,2,.., NV -1 (11-4)
The required sampling frequency defines the time step as:

1

2Af* . 2m (11-3)
The required number of sampling points defines the total calculation time as:
1
T= 11-6
AT (11-6)
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12. SOLVER ACCELERATION

12.1 Introduction

Most of the computational effort of the proposed numerical algorithm is spent in solving the linear
system resulting from the wave diffraction-radiation problem. Therefore, our main focused in order to
reduce the computational time is speeding up the linear solver. To do so, two techniques, that can be
used combined, have been analyzed: the use of deflated solver, and the use of parallel computing in

graphic processing units.

12.2 Solver deflation

Deflation works by considering piecewise constant approximations on coarse sub-domains. These
piecewise constant approximations are associated to the low frequencies eigenmodes of the solution,
which are also the slow convergence modes [12,13]. Then, these slow modes can be quickly
approximated by solving a smaller linear system of equations that can be incorporated to the traditional
preconditioned iterative solvers in order to accelerate the convergence of the solution. Hence, the use of
preconditioning technique is compatible with the use of preconditioners.

The first step is to divide the domain into a set of coarse sub-domains capable of capturing the slow
modes. Several techniques have been developed for this purpose [14,15]. Some authors has proposed a
technique based on using seed-points to start building the sub-domains, and sub-domains are created by
associating nodes to their closer seeds [15]. This technique has the disadvantage of requiring prescribing
the seeds.

The algorithm developed for SeaFEM [1] is based on level structure criteria, where nodes are associated
to a central node based on the level structure rooted at this central node (concept from graph theory). A
maximum level structure “L”, where L refers to the neighbouring level respect to the central node, is
prescribed. Figure 10 shows a domain decomposition obtained using this level structure technique with
level L=2. Ordered pair (sub-domain, level) is used to identify nodes and sub-domains they belong to,

and their corresponding structure level. Notice that nodes will accept to belong to a new sub-domain, if
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and only if its structure level in that sub-domain is lower than its level in its current sub-domain. The

algorithm used to obtain such decomposition is presented step by step next:

Step 0:  Assigned level L+1 to all nodes

Step 1:  Start building sub-domain 0: offer level 0 to the first node of the mesh (root node for sub-
domain 0). It will become node (sub-domain, level)=(0,0)

Step 2: Identify neighbours of the root node (node (0,0)) and offer them level 1: nodes (0,1)

Step 3:  Identify neighbours of nodes (0,1), and offer them level 2: nodes (0,2)

Step 4:  The procedure is repeated until the prescribed level “L” is reached

Step 5:  The first node still with level L+1 (based on the numbering of the nodes) is used as root node
for sub-domain 1, and it is given level 0, becoming the root node (1,0)

Step 6: Identify neighbours of the root node (1,0) and offer them level 1: nodes (1,1) (Notice that some
(0,L) nodes might become (1,1))

Step 7:  Identify neighbours of nodes (1,1), and offer them level 2: nodes (1,2). (Notice that some (0,L)
or (0,L-1) nodes might become (1,2) if L>2 or L-1>2 respectively)

Step 8: The procedure is repeated until the nodes (1,L) are identified

Step 9: Repeat Steps 5-8 until there is no node with level L+1

This algorithm guarantees that any node cannot have a lower structure level respect to any other root
node. And the higher the prescribed level, the lower the number of sub-domains created.

Although the previous algorithm provides good results, it can be improved by using it twice. In a first
round, rather than using the prescribed level L, a structure level 2L is used instead. Then a first
decomposition is found with a lower number of sub-domains and twice the maximum structure level. In
a second round, the procedure is repeated with a maximum structure level L and using as root those
nodes with higher levels. Figure 10 shows the sub-domain decomposition obtained using the two rounds
technique. The first one shows the decomposition after the first round at level 2L, and the second shows
the decomposition after the second round at level L starting of the first decomposition at level 2L.
Notice that the level at the sub-domains boundaries is lower or equal than the prescribed level L, and
always minimum respect to any central node (node of level zero).

The recommended number of sub-domains might depend on the specific case under study. Usually in

the order of hundred is a recommended value. In our specific case, the matrix of the linear system to be
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solved remains the same during the calculation, so that the sub-domain decompositions have to be
carried out just once.

The deflated system has to be solved every iteration of the solver. However, since in our case study the
linear system of equation to be solved remains the same along the simulation, so does the deflated
matrix. The inverse of the deflated matrix can be calculated just in the first time step, and then be stored.

Hence, the resolution of the deflated system within each iteration can be substituted by a matrix vector
multiplication.
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Figure 11: Sub-domain decomposition using the two-rounds neighboring level algorithm. (a) Decomposition after first round.
(b) Decomposition after second round
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12.3 Solver GPU acceleration

The fast development of the videogame industry is leading to higher computational capabilities of
GPUs. Hence, their use for heavy computations in computational fluid dynamics is becoming more
common (see [16,17]).

The implementation carried out in SeaFEM [1] is based on the well-known CUDA, a parallel computing
platform and programming model invented by NVIDIA. It is focussed in speeding up the iterative solver
using the functions provided by the cublas and cusparse libraries.

Deflated and non-deflated preconditioned conjugate gradient (CQG) algorithm has been implemented in
CUDA, along with a sparse approximate inverse (SPAI) preconditioner [18] and incomplete LU
decomposition (ILU) preconditioner. However, using the sparse lower and upper triangular solvers
provided in the cusparse library for ILU preconditioning resulted in poor performance. This poor
performance can be expected since solving triangular system are not suitable for massive parallelization
across tens of thousands threads [19], as required by GPUs in order to hide memory latency. Therefore
we will omit the use of the ILU preconditioner when reporting GPU results.

Since the system matrix remains the same along the computation, preconditioners are calculated just
once and in the first time step. Then, computational time invested in calculating preconditioners is

negligible when compared to the total time spent in the linear solver during the whole simulation.

12.4 CPU Direct solver

SeaFEM has available a direct solver to be used with CPUs. It is advised to use this solver in those cases
where the system matrix remains the same along the simulation. If the system matrix needs to be

updated as the simulation advances, the direct solver will be slower when compared to iterative solvers.

12.5 OpenMP parallelization

OpenMP has been used for parallelization of CPU solvers as well as for evaluating analytical formulas.
For instance, when evaluating irregular seas modelled by spectra discretization based on Airy waves, a
large number of waves might be used, requiring a significant CPU time compared to the solver CPU

time. Open MP has been used in SeaFEM to reduce the CPU time of this type of computations.
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13. FLUID-STRUCTURE INTERACTION

ALGORITHM

SeaFEM features a fluid-structure interaction algorithm, able to perform coupled analysis with the
structural solver of the Tdyn’s suite Ramseries.

The fluid-structure coupling is performed by an implicit iterative algorithm. This way, the pressure field
computed in every iteration of the diffraction-radiation solver is sent to the structural solver to compute
the body deformation. The resulting displacements are sent back to the fluid solver, and used as
boundary condition to compute the new pressure field for the following iterations. The iterative process
continues until the convergence norm condition is fulfilled; the relative distance of the pressure vectors
between two successive iterations is below a given value. The iterative algorithm is accelerated using the
Aitken method [6].

Since the diffraction-radiation and structural solvers are independent, the strategy used to communicate
both solvers is based on the interchange of information at memory level by means of TCP-IP sockets.
The library developed for this purpose, also takes care of the data interpolation from one mesh to

another mesh.
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14. MATHEMATICAL MODEL FOR FREQUENCY

DOMAIN PROBLEMS

14.1 Glossary

Velocity potential

Gravity magnitude

Wave amplitude

Circular frequency

~ & » o %

Wave number
Po Incident wave velocity potential
B Angle between the direction of propagation of the incident wave and the positive x-axis
Pr Radiated component of the velocity potential
Pp Diffracted component of the velocity potential
& j Body’s movement amplitude concerning i™ degree of freedom
U Body forward speed
W, Encounter frequency

Ay j Added mass matrix

B; Damping matrix

14.2 Boundary element method

In SeaFEM, the Boundary Element Method (BEM) is used to solve problems stated within the
framework of the frequency domain analysis. The frequency domain solver of SeaFEM is based on an
adaptation of NEMOH, developed by Ecole Centrale de Nantes (for further information about NEMOH,

see lheea.ec-nantes.fr/doku.php/emo/nemoh/start).

To solve the general equations, the boundary element method is used and applying Green’s function, it

allows taking into account the boundary conditions on body, bottom and free surface. BEM solver has
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the following approach: it decouples the resolution of the linear free surface Boundary Value Problem
and the definition of the boundary condition on the body.

Assuming an irrotational flow, the velocity can be expressed as the gradient of the velocity potential.
The latter assumption along with incompressibility supposition leads to the Laplace equation:

Ve =0 (14-1)
The first order dynamic free surface boundary condition is applied:

P +gp=0 (14-2)

And the kinematic free surface boundary condition establishes a relation between the free surface

elevation ¢ and &:

Y =P, (14-3)

Introducing (14-1) into (14-2), the equation becomes:

(Dtt + gCDZ = 0 (14'4)

Assuming that the solution is of harmonic type, then the last equation becomes:

® = Re(4e'®?) (14-5)

_0)2 . CI) + g(I)Z = O (14-6)

In the frequency domain, the first order free surface boundary condition becomes:

P, -K-®=0 , K=w?/g (14-7)

The velocity potential of the incident wave is defined as:
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_i-g-A coshlk-(z+h)]
Po = W coshk -H

e—i-k-x-cosﬁ—i-k-y-sinﬁ (14_8)

Where k fulfils dispersion relation:

2

% — k-tanhk - H (14-9)

And S is the angle between the direction of propagation of the incident wave and the positive x-axis.

As the problem is linearized, the velocity potential can be decomposed into two components: radiation

and diffraction.

@ =g+ ¢p (14-10)
6

pr=1-w- ) &0 (14-11)
=1

$p = @Yo t+ @5 (14-12)

Where ¢; denotes the amplitude of the body’s movement in its six degrees of freedom and ¢; the

corresponding unit-amplitude radiation potentials.

14.3 Forward speed corrections

Assuming a forward speed of the bodies as veloctiy = U, direction = 3, then a few corrections have
to be made to take into account this effect. First, the frequency has to be changed to a frequency of wave

encounter:

we=w—k-U-cosf (14-13)
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Here k is the wave number, w the frequency without velocity and w, the encounter frequency. Other

changes to be made are for the added mass and damping matrixes:

U

Azs = —7 B§,3 (14-14)

Bys = +U - A, (14-15)
u 0

Asz = +ﬁ B33 (14-16)
u 0

A5,3 = +ﬁ ¢ B3'3 (14'17)
UZ

Bss = +— - A3 (14-18)

This formulation has been taken from the one presented in [19].
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