
SeaFEM reference manual

http://www.compassis.com

info@compassis.com

November 2018

Version: 15.1.0

Compass manuals

Compass - http://www.compassis.com
1

1. SeaFEM Introduction

SeaFEM is a suite of tools for the computational analysis of the
effect of waves, wind and currents on naval and offshore
structures, as well as for maneuvering studies. SeaFEM
applications include ships, spar platforms, FPSO systems,
semisubmersibles, TLPs, marine wind turbines and ocean
energy harnessing devices. The wide range of analysis
capabilities available in SeaFEM enables the assessment of
different design alternatives, significantly reducing overall
project costs and timescales.

SeaFEM includes a state-of-the-art radiation and diffraction BEM
and FEM solver, enabling frequency domain and direct time-
domain analyses of the dynamic response of the structure.
Furthermore, SeaFEM is integrated in the Tdyn environment,
allowing seamless connection with the FEM structural solver
RamSeries, to perform hydroelastic studies.

The different tools available in SeaFEM are fully integrated in an
advanced graphic user interface (GUI), for geometry and data
definition, automatic mesh generation and visualizing the
analysis results. SeaFEM GUI features a versatile tree-like
interface for data managing, allowing an easy control of the
whole process of entering the analysis data.

To facilitate the data definition process, SeaFEM provides tools
to easily configure the type of the analysis to be carried out
(seakeeping, maneuvering, towing or fluid-structure
interaction). Furthermore, SeaFEM provides a variety of tools
which allow having a perfect control over the process and

assess its quality.

2. SeaFEM Technical specifications

SeaFEM has been developed for the most realistic simulations of
three-dimensional multi-body radiation and diffraction
problems, by solving potential flow equations in the time
domain, using the finite element method on unstructured
meshes. This is highly recommended for the simulation of
complex geometries in large and deep domains, and for
considering non-linear phenomena in the analysis or multi-body
studies. In fact, SeaFEM time-domain simulations can efficiently
handle non-linear hydrodynamics effects due to the variable
wetted surface, wave impact on the structure, as well as real
forward speed or current effects.

Details of the theoretical background of SeaFEM can be found in
the Theory manual available in the support page of
http://www.compassis.com.

SeaFEM has been conceived to simulate seakeeping capabilities
of ships and offshore structures, as well as calculating the
hydrodynamics loads due to waves, currents, and translational
velocities acting simultaneously. Moreover, the software has
been equipped with the capability of introducing any external
loads acting over the structure under study. Effects of mooring
lines can be simulated by using the builtin models.

SeaFEM is also equipped with capabilities to simulate
pressurized free surfaces. These capabilities provide the user
with the tools for simulating complex devices such as air-
cushion vehicles (surface effect ships, for instance) and wave
energy converters based on the oscillating water column
principle.

The CUDA© - GPU (Graphics Processing Unit) library and the
Deflated Conjugated Gradient solver available in SeaFEM, are
state of the art implementations aiming at reducing
computational time. This leads to being capable of carrying out
free floating simulations at full size much faster than real time.

Thanks to its advanced pre-processing capabilities, based on
Compass FEM suite’s GUI, SeaFEM can easily model complex
geometric structures with a best-in-class model preparation
time. Additionally, SeaFEM has direct connection with some
popular CAD packages. This way, it is not only possible to import
the geometrical model but also the parts definition and the tree-
like layers structure. Moreover, it is also possible to adapt the
GUI, allowing the user to automate and simplify the analysis
processes.

SeaFEM is coupled with Compass FEM’s structural solver,

http://www.compassis.com
http://www.compassis.com

Compass - http://www.compassis.com
2

SeaFEM reference manual

Ramseries, allowing seamless one-way and two-way implicit
structure-waves interaction analysis (hydro-elasticity) including
tools for strength and fatigue assessment of the design (DNV-
RP-C203, API RP 2A-WSD).

Furthermore, SeaFEM features a powerful scripting extension,
enabling users to enhance simulations without recourse to
external compiled subroutines. SeaFEM Tcl interface allows
access to advanced features, including writing customized
results files, operations on internal structures and
execution/communication with external program by using a
feature rich extension programming language.h extension
programming language.

Compass - http://www.compassis.com
3

SeaFEM reference manual

2.1. Applications

SeaFEM is a general-purpose hydrodynamics analysis tool that
provides great flexibility to address most types of problems,
including:

Motion analysis of ships and offshore structures in different
sea spectra

Response amplitude operators RAOs with white noise
spectrum

Turning circle maneuver in irregular waves

Evaluation of floating wind turbines platforms

Concept design and analysis of wave and wind energy
systems

Seakeeping analysis of offshore structures, including drag
effects based on Morison equation

Multiple body interactions during LNG transfer

TLP tether analysis

Fluid-structure interaction analysis (hydro-elasticity) of
ships and offshore structures

Analysis of air-cushion vehicles in waves

Evaluation of wave loading on lower decks of offshore
structures
Strength and fatigue assessment of offshore structures

(DNV-RP-C203, API RP 2A-WSD)
Design and analysis of mooring systems, including
intermediate buoys and clump weights

Motions analysis of FPSOs

Determination of air gaps

Estimation of power take out of a wave energy converters,
including oscillating water column devices

Discharging landing craft from mother ships

Transportation of large offshore structures using
barges/ships

2.2. System requirements

Windows NT / XP / XP64 / Vista / Vista64 / 7 / 7 64-bit / 8 / 8
64-bit or Linux 32/64
Minimum requirements: 1.0 GB RAM (1.5 GB for 64 bits
editions) and 500 MB of free hard disk space

Supports any graphics card with OpenGL acceleration

Supports CUDA GPU acceleration (required any
CUDAenabled and double precision GPU)

3. SeaFEM Reference
The following sections contain a reference of the different
options available in SeaFEM.

Furthermore, it is possible to obtain help for several items in the
data tree and windows simply by passing the mouse pointer
over them.

3.1. Start Data window
When starting up the Tdyn environment, the start data window
will pop up. This window is meant to define the interface so that
only those features that are necessary for the case study will be
available. This way, the interface will show only those
parameters and boundary conditions required, hiding those
unnecessary, and therefore making it easier to use and navigate
through.

The following figure shows the Tdyn environment and the start
data window. In order to use SeaFEM, make sure that
Seakeeping analysis option is selected from the Simulation
type box.

Within the Analysis domain section of the problem selection
data tree you can select either frequency or time domain
analysis. When selecting the frequency domain option, the
remaining options are automatically set up. On the contrary, if
the time domain option is selected, then first or second order
diffraction radiation options can be choosen depending on the
wave order you want to be used for the analysis. Furthermore,
under the environment section of the data tree, you can select
whether waves and/or currents are to be used. Finally, under
the Type of analysis folder, the following three options are
available:

Seakeeping:this option will allow the user to activate body
movements on those unrestrained degrees of freedoms.

Turning circle: this option is meant to simulate a body
following a circular trajectory. Therefore, surge, sway and
yaw will be restrained.

Towing: this option is meant to simulate a ship following
linear trajectory with a certain direction and speed.
Therefore, surge, sway and yaw will be restrained.

It is obvious that Turning circle and Towing are not compatible
options. On the other hand, any other combination of options
are compatible simultaneously.

The Start data window can be accessed and modified at any
time through the Data menu:

Data ► Start data

or through the Data tree.

Start Data window

3.2. General data
This section contains basic data necessary for simulating any
kind of problem. The next figure shows the General data section
in the Data tree as well as in the boxes underneath. Data can be
modified in both locations, the data tree and in the boxes
underneath when a specific section has been selected. It is
divided into several sections described below:

Compass - http://www.compassis.com
4

SeaFEM reference manual

Units: Set the type of units to be used.

Gravity: Set the gravity value, the direction and the units.

Water density: Set the water density and the metric unit.

Problem setup: This section is equivalent to the start data
window. Values can be modified though the start data or here.

Results: This section is meant to set what kind of results we
want to obtain, and in which format they must be written. Note
thta if the frequency domain type of analysis is being used it is
only necessary to specify the results file format. The rest of the
options listed here are only available when a time domain

analysis is undertaken.

Results file: select the format in which the results are to be
written. Binary formats are less memory consuming. Binary
1 has to be selected if traditional GID post process is to be
used. Binary 2 format (default) is to be used if the newer
post process is to be used. Additionally, the native Nemoh
file format is available for frequency domain analysis.

General: select those values to be written in the result files.
The values shown under "general" are those field values
over meshes. Then, they might cause the result fields to be
quite large memory.

Loads: Forces and moments acting over the body under
study can be recorded along the simulation. Pressure load
refers to those loads obtained by integrating the pressure
over the body surfaces. total loads refers to all kind of
loads, including pressure loads, hydrostatic restoring loads,
and any other external load brought into the simulation.

Kinematics: in this section, select the variables to be
recorded during the simulation. Movements, velocities and
accelerations are referred to the gravity center of the body.
Raos stand for Response Amplitude operator.

User defined: Here, the user can create time dependent
outputs. These outputs might be written analytically and
might be dependent on any variable involve in the
simulation, such as position, velocity or acceleration of the
body, pressure over pressurized free surfaces, etc.

3.3. Computational domain generation

In order to generate a good quality computational domain, it is
advised to the user to follow these recommendations:

For the cases where no currents are imposed, the most
indicated shape for the computational domain is a cylinder.

A region with higher mesh resolution in the free surface
close to the floating object is usually needed in order to
correctly capture the scattered waves solution (waves
radiated and difracted by the floating object). Hence, it is
usually advisable to generate a surface surrounding the
floating body where a smaller mesh size will be further
assigned. Such a region shall usually roughly coincide with
the analysis area (i.e. the region where no artificial
absorption is introduced).

When simulating wave spectra with multiple waves, the
absorption area should be at least as long as the maximum
wave length. Recommended length is twice the maximum
wave length. Nevertheless, if monochromatic wave is used
along with Sommerfeld radiation condition, the absorption
area might be reduced to half the wave length.

Computational depth should be no larger than physical
depth.

If simulating infinite depth, it is advised to set the
computational depth to the maximum wave length.

Computational depth might be smaller than physical
and/or recommended if the bottom boundary condition is
used. Care must be taken since the depth of the body
should be small compared to the computational depth
when using this option.

Compass - http://www.compassis.com
5

SeaFEM reference manual

3.4. Problem description

In this section, some key parameters necessary to carry out the
simulation have to be provided. The following figure shows the
data interface. Note that this section of the data tree becomes
more simple when using the frequency domain type of analysis.
In that case, only the type of bathymetry to be used (and
optionally ther corresponding depth) must be specified.

Problem description data interface

Bathymetry

Infinite depth: to be used when the depth is much larger
than the wave lengths. In this case, the depth of the
domain is recommended to be at least equal to half the
wave length of the largest incident wave. However, smaller
computational depths can be used in combination with the
Bottom boundary condition to simulate lager depths. This
can be done when de characteristic length of the body
under analysis is small compared to the computational
depth.

Constant depth: to be used when the bottom is flat, and
the depth is constant and smaller than half the wave
lengths of the largest wave. Smaller computational depths

can be used in combination with the Bottom boundary
condition the same way it has been indicated previously.

Depth: only available if Bathymetry=Constant depth was
selected. The real depth of the problem must be introduced
in the box

Wave absorption: select if scattered waves generated by the
presence of the body are to be absorbed in order to avoid
reflection at the edge of the computational domain. The
absorption area will start at a specific distance (Beach)from a
reference point located on the free surface. Therefore, there will
be no absorption in the circle with center the reference point,
and radius the value introduced in "Beach". The area with no
dissipation will be referred as the analysis area since no artificial
dissipation is introduced on purpose to damp waves refracted
and radiated by the body.

X absorption reference: X coordinate of the reference point to
determine the analysis and absorption area.

Y absorption reference: Y coordinate of the reference point to
determine the analysis and absorption area.

Absorption factor: determines how strong the dissipation is
(recommended value “1”). Large absorption factors might cause
instabilities and/or wave reflection. Smaller values, while being
less likely to cause instabilities, but will require larger
computational domains to damp refracted and radiated waves.

Beach: determine how far, from the reference point, the free
surface absorption starts.

Sommerfeld radiation condition: This option is only available
in those cases where the the body is subjected to waves, has no
translational movement (turning circle/towing) and is in the
absence of currents. In these cases, the largest waves can be
hard to be dissipated in the absorption area unless a large
computational domain is used. To avoid this situation, a
Sommerfeld radiation condition can be used to allow the largest
waves to leave the domain across the edge of the
computational domain. Therefore, the combined action of the
dissipation area and the Sommerfeld radiation condition is the
best choice to avoid reflection of waves onto the edges.

Analysis area and wave absorption area

Compass - http://www.compassis.com
6

SeaFEM reference manual

3.5. Environment data
This section is meant to provide the data necessary to simulate
the marine environment. Different options are available
depending on wether frequency or time domain is under
consideration.

 Frequency domain:

In this case, the wave spectra will be a set of monochromatic
waves defined by the period and heading of each wave. The
data to be inserted is quite simple and the user only needs to
define the following inputs:

- Shortes and Longest Period: Shortest and Longest wave
periods that the wave spectra will have.

- Number of waves periods: total number of wave periods
to be used in the wave spectra.

- Lower and Upper heading: Lower and Upper wave
heading that the wave spectra will have.

- Number of waves headings: Total number of wave
headings to be used in the wave spectra.

- Speed: Total forward speed that the bodies will have.

- Speed direction: Direction of the speed for all bodies.

 Time domain:

Different sort of wave spectra are available for time domain
analises, each one requiring of specific data. The wave spectra is
introduced in SeaFEM as an incident velocity potential.

Compass - http://www.compassis.com
7

SeaFEM reference manual

Environment data interface

Wave environment data and currents environment data can be
defined through the menu options:

Environment data ► Waves

and

Environment data ► Currents

respectively.

3.5.1. Wave environment data
Next is a description of the different inputs to be provided by
the user:

Wave spectrum type: select the type of incident wave
environment. The following options are available.

Monochromatic wave: this is the simplest spectrum
available. This option generates an incident wave that
corresponds to a monochromatic wave. In order to
determine this monochromatic wave, the wave amplitude,
period and direction of propagation must be provided.

Wave parameters

Pearson Moskowitz spectrum:

S (T) = Hs
2 Tm (0.11

2π) (Tm
T)-5

exp[- 0.44(Tm
T)-4

]

where T is the wave period; Hs is the significant wave height; Tm
is the mean wave period, which is obtained via Tm =2πm0/m1,
with m0 and m1 the zero and first moments of the wave
spectrum. This is probably the simplest idealized spectrum,
obtained by assuming a fully developed sea state, generated by
wind blowing steadily for a long time over a large area. For
further information, please refer to the SeaFEM Theory Manual.

Jonswap2 spectrum: The JONSWAP spectrum was
established during a joint research project, the "JOint North
Sea WAve Project". This is a peak-enhanced Pierson-
Moskowitz spectrum given on the form

S (ω) = (5
16 · Hs

2 ·

T5

Tp
4

2π) · exp(- 1.25(Tp

T)-4
) · (1 -

0.287 · log(γ)) · γY

Y = exp[- (0.159ωTp - 1
σ 2)2

]

where ω=2π/T, σ=0.07 for ω<=6.28/Tp, σ=0.09 for ω>6.28/Tm, T is
the wave period; Hs is the significant wave height, Tp is the peak
wave period and γ is the peakedness parameter. For further
information, please refer to the SeaFEM Theory Manual.

Jonswap spectrum: An alternative definition of the
JONSWAP spectrum given by

S (ω) = (155Hs
2

Tm
4 ω5) · exp[- 944Tm

-4 ω-4] (3.3)Y

Y = exp[- (0.191ωTm - 1
σ 2)2

]

where ω=2π/T, σ=0.07 for ω<=5.24/Tm, σ=0.09 for ω>5.24/Tm, T is
the wave period; Hs is the significant wave height; Tm is the
mean wave period, which is obtained via Tm =2πm0/m1 , with m0
and m1 the zero and first moments of the wave spectrum. For
further information, please refer to the SeaFEM Theory Manual.

White noise: introduce a number of waves with
frequencies uniformly distributed across an interval, and
with same amplitude and direction. This spectrum is used
to carry out response amplitude operator (RAO) analysis
with the time-domain solver.

Customize: a spectrum can be defined based on the
significant wave height and mean wave period.

Read from file: by using this option, any generic wave
spectrum can be defined by the user. To this aim, a text file
must be provided in the data tree entry that becomes
available when rhe 'Read from file' option is selected. In the
text file the user must indicate the relevant wave
parameters (period T, amplitude A, wave direction G and
wave phase P) for each wave component conforming the
spectrum. The specific format of the wave spectrum file can
be viewed in the following example.

SeaFEM Spectrum_file version 1.0

NWaveComponents 20

TWaves AWaves GWaves PWaves

14.6613 2.56028e-005 -0.349066 2.94053

12.6662 0.000229263 -0.116355 3.14788

13.7174 0.000229263 0.116355 4.55531

11.8723 2.56028e-005 0.349066 2.25566

7.21275 0.0123038 -0.349066 2.92168

7.73874 0.110176 -0.116355 0.917345

8.79714 0.110176 0.116355 5.20248

7.21466 0.0123038 0.349066 3.09133

5.66508 0.0427017 -0.349066 5.92504

5.86992 0.382376 -0.116355 2.74575

Compass - http://www.compassis.com
8

SeaFEM reference manual

6.4778 0.382376 0.116355 3.80133

5.77667 0.0427017 0.349066 0.967611

5.33589 0.0272918 -0.349066 2.40646

5.20454 0.244386 -0.116355 4.50504

4.92538 0.244386 0.116355 5.62973

5.17884 0.0272918 0.349066 4.56788

4.13839 0.0189668 -0.349066 3.38664

4.07775 0.16984 -0.116355 5.73655

4.20474 0.16984 0.116355 1.88496

4.65867 0.0189668 0.349066 5.62345

This user defined spectrum file is equivalent to a
Jonswap spectrum realization with the following
characteristics:

-Mean wave period = 5 sec.

-Significant wave height = 2 m.

-Shortest period = 4 sec.

-Longest period = 15 sec.

-Number of wave periods = 5

-Mean wave direction = 0 deg.

-Spreading angle = 40 deg.

-Number of wave directions = 4

Customize spectrum: if the option "customize" has been
selected in "Wave spectrum type", the user can introduced a
spectrum based on the significant wave height and mean wave
period. For instance, a Pearson moskowitz spectrum could be
written as follows:

(Hs
2 · Tm) · 0.11

2 · π · (ws · Tm
2 · π)-5

· exp(- 0.44 · (ws · Tm
2 · π)-4

)

where Hs represents the significant wave height; Tm represents
the mean wave period, ws represent the wave frequency
ω=2π/T (See appendix A).

Directional wave energy: this variable allows the introduction
of a directional wave nergy distribution f(θ), aiming at
reproducing spectra with higher energy around the mean
direction of propagation, and decaying as the direction diverge
from the mean A typical directional wave energy distribution
can be expressed as:

f (θ) = cos2 (2θ
3) ,whereθ = π · γ - γm

γmax - γmin

cos2 (2
3 · γs · π)

and θ goes from -π/2 to π/2. This directional energy distribution
should be introduced with the following syntax:

Directional wave energy examples.

Amplitude: amplitude of monochromatic wave or amplitude for
white noise spectrum waves.

Period: period of the monochromatic wave.

Heading: direction of the monochromatic wave or direction for
white noise spectrum waves. The wave heading (direction) is
defined as the angle from the positive global X axis to the
direction in which the wave is travelling, measured anti-
clockwise when seen from above. Therefore waves travelling
along the X axis (from -X to +X) have a 0 degree wave direction,
and waves travelling along the Y axis (from -Y to +Y) have a 90
degree wave direction.

Mean wave period: mean wave period for wave spectrum such
as Pearson Moskowitz, Jonswap, etc.

Significant height: significant wave period for wave spectrum
such as Pearson Moskowitz, Jonswap, etc.

Shortest period: correspond to the wave with maximum
frequency to be considered when discretizing a spectrum.
Tmin=Tm/2.2 recommended.

Longest period : correspond to the wave with minimum
frequency to be considered when discretizing a spectrum.
Tmax=2.2Tm recommended.

Number of wave periods: or number of wave frequencies to be
used.

Mean wave heading: mean direction of wave propagation. It is
provided in the form of an angle θ measured with respect to the
X global axis. The wave heading (direction) is defined as the
angle from the positive global X axis to the direction in which
the wave is travelling, measured anti-clockwise when seen from
above. Therefore waves travelling along the X axis (from -X to
+X) have a 0 degree wave direction, and waves travelling along
the Y axis (from -Y to +Y) have a 90 degree wave direction.

Spreading angle: angular sector Δθ within which the waves
propagate. Such an angular sector is always centered at the
mean wave heading so that the waves propagate within the
range [θ - Δθ/2, θ + Δθ/2]

Number of wave headings: in case the waves propagate within

Compass - http://www.compassis.com
9

SeaFEM reference manual

an angular sector specified by the mean wave heading and the
spreading angle, this parameter determines how many
directions such an angular sector will be discretized into.

Realization repeatibility: this option must be activated if the
user wishes to run exactlly the same spectrum realization in
further simulations. By contrast, if such an option remains
deactivated, random realizations of the same given spectrum
will be used when running the simulation several times.

Note: the total number of waves used in the realization will be
the “number of wave periods” times ”Number of wave
directions”.

Pearson Moskowitz discretization. Hs=1; Tm=1; Tmax=2.2Tm; Tmin=Tm/2.2; N=20.

3.5.2. Currents environment data
Next is a description of the various inputs to be provided by the
user when using currents:

Velocity: velocity of the water current.

Direction: direction of the water current.

3.6. Time data
In this section, several parameters regarding the timing of the
simulation are to be defined. Note that time data presented in
this section only concern to time domain analysis but not
frequency domain.

Time data interface

Simulation time: length in time of the simulation.

Time step: time step to be use for the time marching schemes.
The time step introduced in this box will be the one used unless
a zero value is introduced. If a zero value is introduced, the time
step will be internally calculated by SeaFEM based on the
minimum mesh size and the stability parameter β=g∆t2/∆zmin.

Output step: time lag between recordings. Values
corresponding between two time steps are linearly interpolated
between the previous and the next time step.

Start time recording: set the point in time when the writing of
the results will start.

Initialization time: set an initialization time period. During this
period, the wave amplitudes and currents will be increased
smoothly from zero to their final values following this
expression: Initialization factor = 0.5·(1-cos(π·time/timeinit)). This
initialization process is meant to avoid long transient behaviours
due to sudden initializations. Sudden initializations may lead to
an unrealistic and highly energetic transient behaviours. In this
cases, longer simulations are required so the unrealistic high
energy behaviour will dissipate over time.

3.7. Numerical data
As well as the time data presented in the previous section of the
manualo, numerical data shown herein concerns only time
domain analysis.

The Numerical data section of the SeaFEM data tree collects

Compass - http://www.compassis.com
10

SeaFEM reference manual

information concerning the numerical algorithms underlying
the SeaFEM solver. Most of the computational time required by
SeaFEM is spent in solving the linear system of equations
resulting from the discretization of the governing equations.
Therefore, selecting the correct parameters will enhance having
faster and even more accurate simulations. Numerical
parameters that affect the behavior and performance of the
main SeaFEM solver (that devoted to solve the finite element
based potential flow problem) appear within the General
subsection of the SeaFEM data tree. On the other hand,
numerical parameters related to the multi-body dynamics solver
are collected within the Body dynamics subsection of the
SeaFEm data tree.

Body dynamics solver numerical data

General numerical data

A brief description of the meaning of each numerical parameter
and the possible values they can take is provided in the
following list:

General numerical data

Processor Unit: while most part of the computations are
carried out by the CPU, SeaFEM provides the option of solving
the linear system of equations faster by means of the graphic
processor unit (GPU). Since most of the computational time is
spent in solving these linear systems, GPU provides a way to
speed up our SeaFEM computational time. Any GPU device
supporting CUDA and double precision is suitable of being used
(see http://developer.nvidia.com/cuda-gpus for further
information).

CPU: all computations are carried out in the CPU.

CPU+GPU: linear systems of equations concerning the main
SeaFEM problem are solved in the GPU. Any other
computation, as for instance the solution of the body
dynamic's problem is carried out in the CPU.

Number of CPUs: those calculations carried out in the CPU may
take advantage of the multithread parallel computing
capabilities of modern processors. The number of CPUs
indicates how many of the available computer's processors are

http://developer.nvidia.com/cuda-gpus

Compass - http://www.compassis.com
11

SeaFEM reference manual

going to be used during the calculation.

Solver: these is the list of available solvers. It actually depends
on the type of analysis under consideration. In those cases
where either current or body translational movements (turning
circle/towing simulations) are present, only Stab-BiCG and
Direct solvers are available. When neither currents nor
translational movements exist, the complete list of solvers
becomes available. When the CPU+GPU option is being used,
the Direct solver is not available in any case.

Conjugate gradient: iterative solver suitable to solve
problems leading to a linear set of algebraic equations with
a symmetric matrix structure

Bi-conjugate gradient: iterative solver suitable to solve
problems leading to a linear set of algebraic equations with
a non-symmetric matrix structure

Stab bi-conjugate gradient: modified version of the bi-
conjugate gradient solver that can provide more stability in
some ill-posed numerical problems.

Deflated conjugate gradient: deflated version of the
conjugate gradient iterative solver. Be aware that the
deflation process is not always guaranteed to speed up the
solving process. Based on our experience, most of the time
it does, but care must be taken when selecting this option.
If you feel that SeaFEM is running slow under this option,
stop the calculation and select the CG solver instead,
compare the speed of the simulation, and act
consequently.

Direct: direct solver based on the third-party IntelMKL
numerical solvers library.

Preconditioner: these is the list of available preconditioners to
be used in conjunction with the iterative solvers listed above in
order to speed-up the calculations.

 if the Processor Unit is set to CPU, the ILU preconditioner is
recommended.
 if the Processor Unit is set to CPU + GPU and neither
currents nor translational movements are simulated: the
SPAI preconditioner is recommended.

 if the Processor Unit is set to CPU + GPU and either currents
or translational movements are simulated: the Diagonal
preconditioner is recommended.

Solver tolerance: maximum tolerance allowed to reach
convergence when using iterative solvers. The default value 10-7
is recommended.

Solver max iterations: maximum number of iterations to be
carried out by the solver until convergence is achieved. The
default value 1000 is recommended.

Free surface stability factor: this factor controls the time step
as explained in the time data section, unless a positive time step
has been prescribed. If neither currents nor translational
movements are simulated, typical values for stability are in the
order of 1. If either currents or translational movements are
simulated, typical values for stability are in the order of 0.1-
0.001, depending on the Froude number. The larger the froude
number, the smaller the stability parameter and the time step.

Damping factor: this parameter is available in those cases
where the body under study has unrestrained degrees of
freedom. Sometimes, the only mechanism to dissipate energy
by the body is through wave radiation. However, this
mechanism might not be dissipative enough and might cause
very long transient periods due to its low dissipation
capabilities. This might be a problem specially when the body is
excited with waves whose frequencies are near the resonance

frequency of the body. This problem can be mitigated by
introducing a small dissipation which is only noticeable near
resonance. This is carried out by bringing a percentage of the
critical damping into the dynamic equations of the body. It is
recommended to use this option only in those cases where it is
necessary due to the low wave radiation capacity of the body,
and where the body is excited near its resonance frequency.
Values between 0 and 0.05 are recommended, depending on
the case.

Free surface scheme: this option is only available when either
currents or translational movements exist. This parameter
actually determines the numerical scheme to be used when
solving the free surface boundary condition with convective
terms.

Streamlines: in this case, the convective term of the free
surface boundary condition is obtained by using a
streamline differential operator that actually uses two
points upstream and one point downstream to evaluate the
derivatives along the streamline.

FEM SUPG: this is an alternative method for the integration
of the free surface boundary condition. In this case a finite
element based SUPG stabilization scheme is used.

Flow linearization: this option is only available when either
currents or translational movements exist. It specifies the type
of linearization to be used when integrating the convective
terms within the free surface boundary condition.

Kelvin: flow around the body is assumed as if is not
perturbed by the presence of the body.

Slow Kelvin: Kelvin linearization above is used but
convective terms in the free surface are not taken into
account.
Double body: flow around the body is assumed as if the
free surface behaves as a wall.
Slow double body: double body linearization above is used
but convective terms in the free surface are not taken into
account.
Non-linear: flow around the body is continously updated to
take into account the erpsence of the ody and the effects of
waves generated at the free surface.

Body dynamics numerical data

Dynamic solver max. iterations: máximum number of
iterations allowed for the dynamic solver.

Dynamic solver relaxation: this parameter concerns the
numerical relaxation of the dynamic solver. It must be greater
than cero.

Max iterations time step: This parameter is available in those
cases where the body under study has unrestrained degrees of
freedom. In these cases, an iterative procedure must be carried
out within each time step to reach convergence of the body
dynamics driven by the hydrodynamic and external loads acting
on the body. This parameter sets the maximum number of
iterations allowed per time step until convergence is achieved.

Tolerance: maximum tolerance allowed to reach convergence
in the iterative procedure carried out within each time step.

Alpha B-N: this parameter concerns the stability of the Bossak-
Newmark scheme used to solve the multibody dynamics
system. It usually takes a negative value. A positive value may
be advisable when the time step is very small since in this case a
first order scheme can increase stability while precision is
preserved inherently because of the small value of the time
step.

Compass - http://www.compassis.com
12

SeaFEM reference manual

Large displacements: this option must be activated to take into
account large displacements when solving the multi-body
dynamics system. If this option is active, the inertia matrix of
the bodies is updated every time step to take into account the
finite rotation of the body. Forces and moments are updated as
well to take into account this effect. Note that large
displacements have limited application within SeaFEM since the
actual position of the body regarding the incident wave is not
updated. Hence, caution is adviced when interpreting the
results obtained using the large displacements option.

3.8. Body data

Body Data section is intended to allow the user to define several
bodies and their corresponding properties. The user can create
as many bodies as necessary, each one being assigned to a
different group of geometrical entities. In the figure below for
example, two different bodies have been defined, each one
being assigned to a different cylindrical floating body.

Multiple bodies defined through the GUI

For each body, information regarding the mass and the radii's
of inertia and unrestrained degrees of freedom must be
provided. This is so irrespectively of wether frequency or time
domain options are under consideration. If a time domain
calculation is undertaken, additional external forces and
moments can be defined for each body.

Body data definition window

Each body data section is described in detail in what follows.

3.8.1. Body properties

Basic data regarding the body must be provided in order to
solve the body's dynamics if the body has unrestrained degrees
of freedom.

Body properties interface

To define body properties use the menu option:

Body data ► Body properties

Mass: the body mass can be introduced in two different ways:
either introducing the exact value or using the function editor.
When using the function editor, the mass can be calculated as
an analytical value depending of some variables used by
SeaFEM. For example, for freely floating objects where the mas
must equal the mass of the displaced water, we could write
Mass=volume·density, where volume refers to the displaced
water volume, and density refers to the water density. This
specific case is shown in the following figure.

Compass - http://www.compassis.com
13

SeaFEM reference manual

Mass function editor

XG: introduce the x coordinate of the gravity center of the body.

YG: introduce the y coordinate of the gravity center of the body.

ZG: introduce the z coordinate of the gravity center of the body.

Radii of gyration: the elements of the inertial matrix are
related to the radii of gyration as: Iii=Mass·rii·rii; Pij=Mass·rij·
|rij|. Then:

rxx: rxx = Ixx
Mass

rxy: rxy = (Pxy
|Pxy|

) · |Pxy|
Mass

rxz: rxz = (Pxz
|Pxz|

) · |Pxz|
Mass

ryy: ryy = Iyy
Mass

ryz: ryz = (Pyz
|Pyz|

) · |Pyz|
Mass

rzz: rzz = Izz
Mass

Radii of gyration matrix interface

Hydrostatic type: this parameter has two possible values,
Linear and Non-Linear. By default, the linear option is used so
that the calculation of the hydrostatic recovery forces is
linearized. By doing this, the displacements of the floating
structure are assumed to be small and the hydrostatic
restoration coefficients assumed to be constant. This allows for
the coefficients to be calculated just once at the beginning of
the simulation taking into account the initial configuration. By
using the non-linear option, the hydrostatic restoration
coefficients are assumed to depend on the actual movement of

the floating structure and they must be evaluated at each time
step. To this aim, an auxiliary body mesh (containing the entire
body) is necessary for tracking the actual position of the body
surface during the simulation, thus allowing for the propper
integration of the hydrostatic pressure. Such an auxiliary mesh
must be generated for each body under analysis and exported
in a text file using GiD mesh format. The generated mesh file
must be provided as "Body mesh" option under Body
properties.

The Non-Linear hydrostatic type option allows for the simulation
of those phenomena that are inherently non-linear as for
instance the parametric resonance.

3.8.2. Additional matrices
The Additional matrices option can be used to provide additional
mass, restoration and damping matrices for the body under
consideration. This can be useful when we want to take into
consideration mass, stiffness and damping effects different
from the hydrodynamic effects directly accounted for by
SeaFEM's solver. This is the case, for instance, when parts of the
body located above the free surface may be anticipated to
suffer significant aerodynamic forces affecting the dynamics of
the whole system. A typical example is the dynamic effect of the
wind turbine attached to a floating TLP structure (see SeaFEM's
tutorials manual for further details on this example).

In these cases, a single mass, restoration and damping matrix
can be specified for each body through the data tree's GUI, as
shown in the following figure.

Additional matrices option as it appears in the SeaFEM's data tree. As can be seen, a
reference point must be provided.

If more than one individual matrix needs to be provided, it can
still be done by using the SeaFEM's TCL extension. In this case,
an index identifying the body to which the matrix is associated
and the corresponding reference point must be provided for
each individual matrix (see also SeaFEM's tutorials manual for
further details on this usage). The actual sintax looks like this:

Compass - http://www.compassis.com
14

SeaFEM reference manual

TdynTcl_Add_Mass_Matrix <bIdx> [list <xcoord> <ycoord> <zcoord>]
[list <M11> <M12> ... <M66>]

where <bIdx> is the index thats identifies the body, <xcoord>,
<ycoord>, <zcoord> are the coordinates of the reference point
and <M11> ... <M66> are the 36 coefficients of the matrix.

Similarly, the TCL's extension sintax for additional stiffness and
damping matrixes reads as follows.

TdynTcl_Add_Stiffness_Matrix <bIdx> [list <xcoord> <ycoord>
<zcoord>] [list <S11> <S12> ... <S66>]

TdynTcl_Add_Damping_Matrix <bIdx> [list <xcoord> <ycoord>
<zcoord>] [list <D11> <D12> ... <D66>]

Managing an arbitrary reference point

It has already been noted that a reference point, to which the
matrix coefficients are referred, must be provided for all
additional matrices. With this information, SeaFEM internally
evaluates the actual position of the gravity center of the body
system and transforms the matrices so that they are all referred
to the new gravity center. Note that such an internally updated
gravity center may not coincide in general with that specified by
the user in the "Body properties" tab that actually corresponds
to the reference point of the body's main component. In any
case, the actual position of the gravity center of the system is
output for each body at the beginning of the information file
when running the simulation. Finally, the dynamics of the
system are finally solved in the body's frame of reference so
that all the results are referenced to the corresponding updated
gravity center.

Sometimes it can be useful to set the mass of the body to zero
and actually enforce the mass and inertia properties of the body
by using the additional mass matrix option. If this is the case,
the radii of gyration data in the Body properties section of the
data tree has no effect since the corresponding inertia
coeffcients evaluate to zero (i.e. Iij = Rij

2·M being M equal zero)
and the actual inertia matrix corresponds to that provided by
the additional mass matrix option. Note that in the case of using
the frequency domain module of SeaFEM, setting the mass of
the body to zero has the effect of the solver to internally
compute the actual mass of the body from the displacement
and the water density. This is equivalent to what is done when
using the time domain module if the "vol*density" formula is
used in the "Mass" field of the body properties data.

3.8.3. Degrees of freedom

Next figure shows the interface where the user can
activate/deactivate the unrestrained degrees of freedom. When
performing analysis such as Turning circle or Towing, the
Surge,Sway and Yaw are restrained degrees of freedom since the
body is forced to follow a specific trajectory, while the Heave,
Roll and Pitch are unrestrained.

Degrees of freedom interface

Degrees of freedom can be activated/deactivated through the
menu option:

Body data ► Degrees of freedom

Surge: select if the floating object is supposed to translate
along the x axis.

Sway: select if the floating object is supposed to translate along
the y axis.

Heave: select if the floating object is supposed to translate
along the z axis.

Roll: select if the floating object is supposed to rotate around
the x axis.

Pitch: select if the floating object is supposed to rotate around
the y axis.

Yaw: select if the floating object is supposed to rotate around
the z axis.

3.8.4. External loads
External loads (forces and moments) can be defined either as a

Compass - http://www.compassis.com
15

SeaFEM reference manual

constant value or via a set of analytical functions. This functions
can be tuned to model, for instance, tension legs acting as
springs. These external loads may be dependent on any of the
variables listed in Appendix A.

External loads interface

External loads can be defined using the menu option:

Body data ► External loads

3.8.5. Local external loads
External loads (forces and moments) can also be defined
relative to a local reference frame fixed to the body. This can be
useful, for instance, to model the action of a PTO system when
the displacements of the bodies cannot be considered to be
small.

Local external loads can be defined either as a constant value or
via a set of analytical functions. These external loads may be
dependent on any of the variables listed in Appendix A.

Local external loads interface

External loads can be defined using the menu option:

Body data ► Local external loads

3.8.6. Initial conditions
This section is used to introduced initial conditions for each
body under analysis. For instance, if a extinction test in roll is to
be carried out, the initial roll angle has to be known and
introduced in the corresponding box. Initial velocities are
applied in a similar way.

Compass - http://www.compassis.com
16

SeaFEM reference manual

Initial Position

Initial position options are available through the menu:

Body data ► Initial position

Initial X: set a initial X position for the object.

Initial Y: set a initial Y position for the object.

Initial Z: set a initial Z position for the object.

Initial RX: set a initial RX rotation angle for the object.

Initial RY: set a initial RY rotation angle for the object.

Initial RZ: set a initial RZ rotation angle for the object.

Initial position interface

Initial Velocity

Initial velocity data can be defined through the menu:

Body data ► Initial velocity

Initial VX: set a initial X velocity for the object.

Initial VY: set a initial Y velocity for the object.

Initial VZ: set a initial Z velocity for the object.

Initial WX: set a initial WX angular velocity for the object.

Initial WY: set a initial WY angular velocity for the object.

Initial WZ: set a initial WZ angular velocity for the object.

Initial velocity interface

3.9. Mooring data

This section is devoted to present the GUI options available in
SeaFEM to define a wide variety of mooring systems. All the
information presented in this section is complementary to that
in sections Appendix B: Tcl extension and Appendix E: Mooring
definition by Tcl where the definition of mooring systems by
using the Tcl extension of SeaFEM is described.

Mooring lines definition

A mooring system may consist on several independent mooring
lines connected to a given body. At the same time, each
mooring line may consist on several interconnected mooring
segments (also called elements within the GUI). Elements (i.e.
mooring segments) are linked at conection points (also called
connecctions within the GUI). The image below shows an
example of mooring system definition. In this case, the system
consists on a single mooring line composed by three mooring
segments (E11, E12, E14). The segments are connected between
themselfs, but also with the seabed and with the floating body
through the connections points (P11, P12, ..., P15).

New mooring lines can be created by right-clicking over the
"Mooring data" option of the data tree and selecting the option
"Create a new mooring line". By default, when creating a new
mooring line it contains a single element.

Mooring data ► Create new mooring line

Elements definition

When creating a new mooring line, a single mooring segment is

Compass - http://www.compassis.com
17

SeaFEM reference manual

created by default and assigned to the current segment. New
mooring segments can be created by copying the previous one
and editing the corresponding parameters as they are
described in what follows:

Type of mooring : this parameter determines the type of
mooring segment to be used. The possible values of this
parameter are:

Spring : quasi-static elastic bar (spring able to work in both,
tension and compression regimes).

Spring only tension : quasi-static cable (spring able to work
only in tension)

Catenary : quasi-static elastic catenary

Dynamic cable : dynamic cable

Length [m] : length of the current mooring element

Area [m2] : cross section area of the element

Young modulus [Pa] : Young modulus of the current mooring
element

Effective weight [N/m] : effective weight (actual weight minus
bouyancy) per unit length

End A: This field is used to specify the first end point of the
current mooring segment. It can be specified by either giving
the coordinates of a new point, or by selecting an already
existing point of the actual geometry. (See the "Connection
definition" section below).

End B: This field is used to specify the second end point of the
current mooring segment. It can be specified by either giving
the coordinates of a new point, or by selecting an already
existing point of the actual geometry. (See the "Connection
definition" section below).

Number of elements : this parameter is only enabled when the
dynamic FEM cable type of mooring is selected. It determines
the number of line elements used in the cable discretization.

Damping a, b : user defined damping ratios for dynamic cables

Connections definition

As it was shown in the previous section, any mooring segment
must be defined by specifying the two end points (End A and
End B) of the segment's initial configuration. New connection
points can be created in-situ when editing a given mooring
element. If the connection point already exists, it will be
available from the drop-down list next to the End A and End B
entries in the "Mooring element" definition window. The next
figures show the connection's definition window that is used to
define a new connection point. Specific parameters depend on
the actual type of connection point being defined.

The required parameters and their possible values are

Compass - http://www.compassis.com
18

SeaFEM reference manual

described next.

Name : name used to identify the connection point

Type : type of connection point.

 Connection point : connection point used to link two
mooring segments

 Fairlead point : connection point used to link a mooring
segment with a body

 Anchor point : connection point used to link a mooring
segment with the seabed

Point : coordinates of the connection point

Buoy/Weight : buoyancy or weight force to be applied vertically
at the connection point. This parameter is available only for
connection points between mooring segments

Body : it determines to wich body the mooring segment is linked
to when using the current connection point. This parameter is
only available for fairlead connection points

Seabed contact : type of interaction between the seabed and the
mooring segment that ends at the current connection point.
This parameter is only available for anchor connection points,
and has effect only when using catenary mooring segments and
cables. Possible values for this parameter are as follows:

 Frictionless seabed
 Chain with sandy seabed

 Chain with mud/sand seabed
 Chain with mud/clay seabed

 Wire rope with sandy seabed

 Wire rope with mud/sand seabed

 Wire rope with mud/clay seabed

3.10. Slender elements data
This section is devoted to present the GUI options available in
SeaFEM to define slender elements (i.e. Morison's elements). All
the information presented in this section is complementary to
that in sections Appendix B: Tcl extension and Appendix F:
Morison's forces effect where the definition of slender elements
by using the Tcl extension of SeaFEM is described.

Slender element sets to define framework structures

When viscous effects are anticipated to play a role on the
dynamic behavior of an offshore structure, Morison's equation
can be used in SeaFEM to introduce force corrections due to
such viscous effects. To this aim slender elements must be
created and associated to a given body. For the sake of visual
organization, such elements can also be grouped in the GUI of
SeaFEM forming auxiliary framework structures. Based on the
information provided by the user, SeaFEM evaluates Morison's
forces per unit length acting on each element, and after
integration along the elements, the resultant forces are
incorporated to the dynamics of the rigid body system.

The image below shows an example of framework structure
definition. In this case, the system consists on a single
framework structure composed by four slender elements.

Note that grouping slender elements in element sets has no
special meaning and may be used only for organization
purposes. But each individual element must be explicitly
associated to a given body. New slender element sets can be
created by right-clicking over the "Slender elements data"
option of the data tree and selecting the option "Create new
slender element set". By default, when creating a new set it
contains a single element.

Slender elements data ► Create new slender elements set

Slender elements definition

When creating a new slender elements set, a single slender
element is created by default and assigned to the current set.
New slender elements can be created by copying the previous
one and editing the corresponding parameters as they are
described in what follows:

Compass - http://www.compassis.com
19

SeaFEM reference manual

Body: this parameter identifies the body to which the slender
element is going to be connected.

Diameter: diameter of the slender element cross section.

Section area: total cross section area of the element.

Cm: added mass correction coefficient.

Cd: non-linear drag coefficient.

Cv: linear drag coefficient.

Cf: friction coefficient.

Cl: lift coefficient.

Virtual element: this parameter determines if the corresponding
slender element is going to be considered a virutal element. If
the virtual element option is checked floatability forces over the
element are neglected.

Initial point: coordinates of the point where the element begins.

End point: coordinates of the end point of the element.

3.11. Test type

Test type data will be available in the SeaFEM data tree when
either 'Turning circle' or 'Towing' type of analysis are selected.
Note that these type of analysis are only compatible with the
time domain type of problem.

Type of analysis selection in the Start Data window

The type of analysis is also available through the menu:

General data ► Problem setup ► Type of Analysis

Compass - http://www.compassis.com
20

SeaFEM reference manual

Turning circle test type options

Towing test type options

Next is a description of the different inputs to be provided by
the user depending on the test type being considered.

Towing test type:

Speed: towing velocity applied during the test.

Direction: direction along which the towing velocity is
applied. It is provided in the form of an angle measured
with respect to the X global axis.

Turning circle test type:

Drift angle: maneuver drift. It is provided in the form of an
angle measured with respect to the X global axis.

Turning diameter: diameter of the turning circle of the
test. It must be a positive number.

Time: time used to complete the maneuver.

Compass - http://www.compassis.com
21

SeaFEM reference manual

3.12. Boundary conditions

For time domain analysis, boundary conditions must be applied
on the surfaces surrounding the volume, so the stated problem
can be solved. Different type of boundary conditions can be
applied, each of them aiming at different purposes. In order to
explain each boundary conditions, the case study of a floating
cylinder will be used as an example (see Application example
section for further information). The following figure shows the
geometry for this specific case study:

Body geometry and computational domain

Boundary conditions interface

A description of each type of boundary condition is given next:

Free Surface: Condition to be applied on the surfaces located at
the plane z=0. On this surfaces, the kinematic and dynamic free
surface boundary conditions will be applied.

Compass - http://www.compassis.com
22

SeaFEM reference manual

Free surface BC: data interface and geometry where the boundary condition has been
applied on

Outlet: Condition to be applied to the vertical surfaces
bounding the computational domain. It is used to apply two
types of condition:

Case 1: this case has neither body translational velocities
nor currents. Then the Sommerfeld radiation condition is
applied for the longest waves.

Case 2: this case has body translational velocities and/or
currents. Then no flow boundary condition for the
scattered velocity potential is applied.

Outlet BC: data interface and geometry where the boundary condition has been applied on

Bottom: Condition to be applied to the lower horizontal surface
bounding the computational domain. It is used to apply two
types of conditions:

Case 1: this case has neither body translational velocities
nor currents. Then a Neumann boundary condition is used
to impose a flow through the boundary to match the effect
of the actual depth to the depth of the computational
domain. For example, this condition can be used for infinite
depth simulations and using computational depths smaller
than half the wave length of the largest waves. However,
care must be taken, because this can be done as long as
the computational depth is large enough so that the body
will not realize the presence of the computational bottom

Case 2: this case has body translational velocities and/or
currents. Then no flow boundary condition for the total
velocity potential (incident+scattered potential) is applied.
For this case, this condition is equivalent to a Wall type
boundary condition.

Compass - http://www.compassis.com
23

SeaFEM reference manual

Bottom BC: data interface and geometry where the boundary condition has been applied on

Wall: Condition to be applied on fixed surfaces where waves will
bounce back. This condition impose a no flow boundary
condition for the total velocity potential. It can be applied on
non-horizontal surfaces bounding the lower part of the
computational domain to simulate irregular sea bottom (then
the Bottom boundary condition should not be applied).

Wall BC interface

PfreeSurface: Condition to be applied on free surfaces where
pressure will be applied. Next figure shows an example of a
PFreeSurface for a wave energy device based on the oscillating
water column principle. This condition is to be applied on
surfaces located at the plane z=0, and the Free Surface boundary
condition have to be applied as well. On each node over the
selected free surfaces, a specific pressure will be applied. This
pressure is obtained as: P=(Paverage+Pvariation(t))·Pdistribution(x,y),
where P is the pressure to be applied, Paverage is an average
pressure constant in time and uniform in space, Pvariation(t) is a
time dependent pressure uniform in space, and Pdistribution(x,y) is
a pressure distribution in space and constant in time. The
formulation for each component of the pressure is introduced
via the function editor, whose variables are described in
Appendix A.

PFreeSurface BC: data interface and geometry where the boundary condition has been
applied

HfreeSurface: Condition to be applied on specific free surfaces
where the free surface elevation is limited in height (no higher
than specified values). This condition is to be applied on
surfaces located at the plane z=0, and the Free Surface boundary
condition has to be applied as well. The limitation in height can
be imposed in two different ways:

Analytical: the elevation limit is introduced via an analytical
function using the function editor.

Dry body: the elevation limit is introduced via a three
dimensional surface mesh. The vertical projection of this
mesh should cover the portion of free surface where the
HreeSurface boundary condition has been imposed. This
mesh will move following the body movements, and
pressure over the vetted portions will be calculated, as well
as the resulting forces and moments. These forces and
moments can be introduced into the body dynamics via the
function editor provided in the external loads section.

Tcl script: The elevation limit is defined in a Tcl script. See
Appendix B: Tcl extension section for further information.

Compass - http://www.compassis.com
24

SeaFEM reference manual

HFreeSurface BC: data interface

Air gap: Condition to be applied on specific free surfaces where

the free surface elevation is limited in height (no higher than
specified values), and air gap results needs to be known. This
condition is to be applied on surfaces located at the plane z=0,
and the Free Surface boundary condition has to be applied as
well. The limitation in height can be imposed in two different
ways:

Analytical: the elevation limit is introduced via an
analytical function using the function editor.

Dry body: the elevation limit is introduced via a three
dimensional surface mesh. The vertical projection of
this mesh should cover the portion of free surface
where the Air gap boundary condition has been
imposed. This mesh will move following the body
movements, and air gap over the vetted portions will
be calculated.

Air gap BC: data interface

Compass - http://www.compassis.com
25

SeaFEM reference manual

Transom stern: when considering transom sterns, flow
detachment happens at the lower edge of the transom. Since
potential flow is incapable of predicting this sort of detachment,
a transpiration model is used in SeaFEM to enforce it. To do so,
the no flux body boundary condition is no longer applied to the
body surfaces where the transom stern condiction is applied.
On the contrary, a flux is allowed on these surfaces.

Transom stern BC interface

Transom stern trailing edge: this condition is used to enforce
that the detachment edge belong to the free surface stream
surface.

Transom stern trailing edge BC interface

Fluid volume: this condition is only available in Coupled
Seakeeping-Structural analysis. For this kind of analysis, it is
mandatory to apply this boundary condition to the entire
volume defining the SeaFEM domain of analysis. Strictly
speaking, this is not a boundary condition, but a property of the
model that is necessary to identify the seakeeping domain and
to differentiate it from the structural mesh.

Compass - http://www.compassis.com
26

SeaFEM reference manual

Fluid volume coupling BC interface

3.13. Mesh generation

Mesh requirements are different depending on wether,
frequency or time domain analysis are used. Frequency domain
analysis just require a body boundary mesh consistent on
quadrilateral elements. Hence, it usually suffices to provide a
global mesh size and mesh transition, since SeaFEM
automatically sets the type of element required. Complicated
geometries may require additional assignment of local mesh
sizes.

On the other hand, in order to generate a good quality mesh for
time domain analysis, it is advised to the user to follow these
recommendations:

The mesh size at the body and free surface in the analysis
area must be small enough so that the geometry and the
smaller wave can be represented accurately. The mesh size
should be no larger than one fifth of the smallest wave
length. Recommended value, at least, one tenth.

Mesh size at the outlet should be no larger than one fifth of
the distance to the reference point.

Mesh size at the portion of the bottom located right below
the body should be no larger than one fifth of the
computational depth. Recommended value is one tenth
when the computational depth is at least as large as the
maximum wave length. Otherwise, the smaller the
computational depth, the smaller the mesh size.

Mesh size transition should be reasonable smooth around
the analysis area.

Lines should be assigned a mesh size corresponding to the
minimum size assigned to the surfaces they belong to.

Points should be assigned a mesh size corresponding to
the minimum size assigned to the lines they belong to.

3.14. Executing SeaFEM solver

3.14.1. Automatically executing SeaFEM

SeaFEM solver can be comfortably started through Tdyn pre-
processing environment Calculate menu. Once the analysed
problem is defined (i.e. the geometry is created) the boundary
conditions assigned, and the mesh is generated, the Start
button in the Calculate menu (or the Calculate icon) can be
pressed.

Calculate ► Calculate window

Then the calculation is started and creates a number of output
files (see section Output files for a brief description of the files
generated during the execution).

3.14.2. Manually executing SeaFEM

Sometimes it can be interesting to run the Tdyn executable

(tdyn.exe) manually (without using the graphic user interface of
the software) in order to run SeaFEM analysis. The necessary
steps are described here.

From here in advance, the following notation will be employed
for description purposes:

$gidpath : root directory of the installed program. It contains,
among others, the gid.exe executable file called to run the GiD
custom GUI.

$CompassFEM_version : CompassFEM problemtype version
name.

$inputpath : directory that contains the input data file associated
to the SeaFEM model under analysis.

$modelname : name of the input data file.

First, the input data file required by the Tdyn executable must
be generated before execution. To this aim, the corresponding
SeaFEM model must be loaded to the GiD custom interface.

Next, the input data file must be exported, assuming that the
model setup has been finished successfully (applying material
properties and boundary conditions) and that the mesh has
been already generated. In order to export the input file, the
following menu sequence must be used:

Files ► Export ► Calculation file...

By doing this, the user will be asked for a file name
($modelname) and location ($inputpath). By default, .dat
extension will be used to export de input file. If desired, .flavia
extension can be also specified for instance, trying to mimic the
file name convention used when running SeaFEM solver
automatically.

Before execution, you must ensure that the tdyn.exe process is
able to find a password.txt file containg a valid tdyn password.
You can create such a text file manually and copying the
password inside. Alternatively, the password.txt file can be
copied from the directory $gidpath\problemtypes\$CompassF
EM_version\compassfem.gid , where it is automatically saved if
tdyn passwords have been previously registered through the
GiD custom GUI. For manual execution of the solver, the
password file must be located either next to the tdyn.exe
executable (this is on the previously mentioned
$gidpath\problemtypes\$CompassFEM_version\compassfe
m.gid\exec directory) or next to the input file.

After exporting the input file and copying a valid password.txt
file, everything is ready to launch tdyn.exe manually. To this
aim, open a command shell and move to the location of the
tdyn.exe executable. Such a location will be typically of the form:

$gidpath\problemtypes\$CompassFEM_version\compassfe
m.gid\exec

Note that tdyn.exe may be also executed from an arbitrary
location if the directory path above is convinientlly added to the
environment system variable PATH.

Finally, launch tdyn by using the following command line:

\:> tdyn.exe -name "$inputpath\$modelname" -SeaWaves

3.14.3. Output files generated during process
execution
The output files described in the following section concern
to the global analysis.

Compass - http://www.compassis.com
27

SeaFEM reference manual

ProblemName.flavia.inf : Text file containing global information
as well as process information for each time step. The content
of this file can also be accessed during calculation through the
GUI by using the menu option Calculate > View process info.

ProblemName.flavia.out : Text file containing iterations and
convergence history.

ProblemName.flavia.tim : XML file that contains a timetable in
XML format giving information on the CPU time consumption of
the process. The timetable contains a report of the execution
time used by different parts of the problem. This file is only
available after complete successful calculation of a problem.

ProblemName.flavia.err : Text file containing error messages
(file created only if tdyn.exe exits with an error).

ProblemName.flavia.res : Main results file that contains all field
valued results. When pressing Postprocess in Custom GiD, this
file is loaded, and the results it contains can be visualized in the
post-processing module. Also note that each calculation will
delete a previous results file that might exist in this directory,
unless it has been renamed before the new calculation process
has been started.

ProblemName.flavia.ram.msh : Mesh for structural analysis
using Ram-Series.

The output files described in the following section concern
to the results of the mooring system.

MooringResults.msh : Mesh file containing the nodes
coordinates of the mooring segments mesh for the initial
configuration. For post-process animation, the coordinates of
the initial mesh are updated according to the displacement
results saved in MooringResults.res during calculation.

ProblemName.MooringData.res : Text file containing time
evolution data of the tension force on both ends of each
mooring segment.

MooringResults.res : Text file that contains displacement results
(componets and module) at mooring mesh nodes. This results
are necessary for animation of the mooring lines in the
postprocess.

The output files described in the following section concern
to time evolution results on bodies.

Results contained in these files can be visualized using the
SeaFEM graphs utility in the SeaFEM postprocessor (see for
instance section Results visualization).

ProblemName.BodyKinematics.res : Text file containing time
history data of body movements, velocities and accelerations of
all bodies under analysis. The complete set of data (all those
kinematic results selected for output in the data tree) is written
first for the first body defined in the GUI. The rest of bodies data
results are written following the order the bodies are defined in
the GUI.

ProblemName.BodyLoads.res : Text file containing time history
data of body loads and moments acting over all bodies under
analysis. The complete set of data (all those kinematic results
selected for output in the data tree) is written first for the first
body defined in the GUI. The rest of bodies data results are
written following the order the bodies are defined in the GUI.
Different components of forces and moments are written
separately. Hence, total forces, reactions, hydrostatic pressure
forces and dynamic pressure forces can be assessed separately.

ProblemName.Outputs.res : Text file containing time evolution
data of the user defined results. (Up to 10 custom results can be

defined by the user in the User defined data tree entry).

MooringLoads.res : Text file containing time evolution data of
the mooring loads acting on bodies.

The output files described in the following section concern
the body animation results.

Results contained in these files can be used to setup body
animations within the postprocessor (see for instance section
Results visualization).

ProblemName.BodyMovements_animations.res : Text file
containing time history data of the movements of the first body
defined in the GUI of SeaFEM (refered to the global frame of
reference located at the origin 0,0,0).

BodyMovements_animations_#.res : # stands for an integer
index that identifies the body to which the file under
consideration refers. These are text files similar to the previous
one and concerning the remaining bodies defined in the
analysis.

3.15. Body load results

Various load components acting on each body can be plot
within the SeaFEM postprocessor. To this aim, the following
menu option can be used.

Postprocess ► SeaFEM Graphs

Once the graphs window appears, the 'Body Loads' option must
be selected from the results type combobox. By doing this, a
separate tab will appear for each body the user has defined,
which will contain the various load components acting on the
body at hand. Available load components read as follows:

 Total: resultant of all external forces acting on the body.
Usually, this is the resultant from adding the hydrostatic
and hydrodynamic pressure loads, mooring loads, the
gravity effect and any external forces defined by the user.
In other special cases, such a total load may also contain
the forces and moments due to slender (Morison) elements
(if defined by the user), and the effect of additional added
mass, stiffness and damping matrices in the case these
matrices are also provided by the user through the GUI
interface of SeaFEM. Finally, if a damping resonance factor
is used (see numerical data for details), the corresponding
damping load will be also added to the total load.

 Reactions: these are the body reactions evaluated as R =
M·a - Ft where M is the body mass matrix, a is the vector of
linear and angular accelerations and Ft is the vector of total
forces and moments defined above. Note that in the case
the reactions are due to the forces and moments from
other bodies transmited through the body links, the
reactions as defined here are the resultant of all body links
attached to the body under consideration. Detailed
information on body link reactions is provided in a separate
file where body loads are reported individually for each
body link instead of the resultant provided here.

 Hydrostatic: these are the hydrostatic pressure loads
evaluated using the hydrostatic restoring matrix, if linear
hydrostatics is used, or by actual integration of the
hydrostatic pressure over the auxiliary body mesh if the
non-linear hydrostatics option is selected.

 Dynamic: this are the dynamic pressure loads obtained by
integration over the body surface of the dynamic pressure
obtained when solving the waves (diffraction-radiation)
problem.

Compass - http://www.compassis.com
28

SeaFEM reference manual

 Mooring: forces acting over the body due to the action of
the mooring lines attached to the body under
consideration.

3.16. Appendix A: function editor

The function editor is a flexible tool to bring dependent values,
external to the code, into the computations. Next figure shows
an example of the use of the function editor.

Function editor interface

The following operators can be used in the definition of
functions:

Basic operators:

+ : adding operator.

Syntax: [adding_expression] + [adding_expression].

- : substraction operator.

Syntax: [substraction_expression] -
[substraction_expression].

^ : exponent operator.

Syntax: [exponent_expression] ^ [function_expression].

* : multiplicative operator.

Syntax: [multiplicative_expression] * [multiplicative
_expression].

/ : division operator.

Syntax: [multiplicative_expression] / [quotient_expression].

div : integer division operator int(x/y+0.5).

Syntax: ([multiplicative_expression]) div ([quotient_expres-
sion]). Example: (x)div(2+y).

idiv : integer division operator int(x/y+0.5). Similar to div
operator but with different syntax.

Syntax: idiv ([multiplicative_expression], [quotient_expres-
sion]). Example: idiv(x,2+y).

mod : integer division module operator
int(x+0.5)%int(y+0.5).

Syntax: ([multiplicative_expression]) mod ([quotient_expres-
sion]). Example: (t)mod(2).

imod : integer division module operator
int(x+0.5)%int(y+0.5). Similar to mod operator but with
different syntax.

Syntax: imod ([multiplicative_expression],[quotient_expres-
sion]). Example: imod(t,2).

rdiv : real division operator int(x/y).

Syntax: ([multiplicative_expression]) rdiv ([quotient_expres-
sion]). Example: (t)rdiv(5).

ddiv : real division operator int(x/y). Similar to rdiv operator
but with different syntax.

Syntax: ddiv ([multiplicative_expression], [quotient_expres-
sion]). Example: ddiv(t,5).

rmod : real division module operator x/y-int(x/y).

Syntax: ([multiplicative_expression]) rmod
([quotient_expres-sion]). Example: (t)rmod(5).

dmod : real division module operator x/y-int(x/y). Similar to
rmod operator but with different syntax.

Syntax: dmod ([multiplicative_expression],
[quotient_expres-sion]). Example: dmod(t,5).

max : maximum operator.

Syntax: max ([expression], [expression]). Example: max(x,y).

min : minimum operator.

Syntax: min ([expression], [expression]). Example: min(x,y).
not : not operator.

Syntax: not([function_expression]).
~ : not operator.

Syntax: ~([function_expression]).

Examples:
(2*dy)

(5*(dy+1))/2

(dz*dy)mod(5)

imod(dz*dy) (5)

(5^4)

Relational operators:

The relational (binary) operators compare their first operand
with their second operand to test validity of the specified
relationship. The result of the relational expression is 1 if the
tested relationship is true and 0 if it is false. The binary
operators that can be used for functions definitions are:

< : less than operator.

Syntax: [expression] < [expression].

< = : less or equal than operator.

Syntax: [expression] <= [expression].

>= : greater or equal than operator.

Syntax: [expression] >= [expression].

> : greater than operator.

Syntax: [expression] > [expression].

= : equal operator.

Syntax: [expression] = [expression].

~= : not equal operator.

Syntax: [expression] != [expression].

& : and operator.

Syntax: [expression] & [expression].

| : and operator.

Syntax: [expression] | [expression].

Examples:

(dy>2)

(dx<=1)
(dx!=1)

Compass - http://www.compassis.com
29

SeaFEM reference manual

(dy>2)&(dx>2)&(dx<3)&(dy<3)

if-else statement:

The if statement controls conditional branching. The body of the
if statement (elif_expression) is executed if the value of the
expression is non zero. The syntax for the if statement is the
following:

if(expression)then(elif_expression)else(next_expression)endif

being elif_expression an additional expression that may include
an elif clause with next form:

(expression2)elif(elif_expression2)then(next_expression2)

Examples:

if(dy>2)then(if(x<1)then(1)else(0)endif)else(0)endif

if(dy>2)then(1)elif(dx<1)then(2)else(0)endif

Function operators:

The function operators calculate the value of a standard
function at the point defined by the given argument. The
function operators that can be used for the definition of the
functions are:

sqrt : the sqrt function calculates the square root of the
argument. Syntax: sqrt(.)

abs : the abs function calculates the absolute value of the
argument. Syntax: abs(.)

ln : logarithm of the argument, e base. Syntax: ln(.)

log : logarithm of the argument, decimal base. Syntax: log(.)

fac : factorial of the argument. Syntax: fac(.)

sin : sine of the argument. Syntax: sin(.) (argument given in
radians).
cos : cosine of the argument. Syntax: cos(.) (argument given
in radians).
tan : tangent of the argument. Syntax: tan(.) (argument
given in radians).

asin : The asin function returns the arcsine of the argument
in the range -π/2 to π/2 radians. Syntax: asin(.).

acos : The acos function returns the arccosine of the
argument in the range 0 to À radians. Syntax: acos(.).

atan : The atan function returns the arctangent of the
argument in the range -π/2 to π/2 radians. Syntax: atan(.)
(result given in radians).

sinh : hyperbolic sine of the argument. Syntax: sinh(.).

cosh : hyperbolic cosine of the argument. Syntax: cosh(.).

tanh : hyperbolic tangent of the argument. Syntax: tanh(.).

exp : the exp function calculates the exponential value of
the argument. Syntax: exp(.).

heaviside : the heaviside function evaluates Hs defined as:

Hε(Φ)=0 Φ<-ε

Hε(Φ)=1/2 (1+Φ/ε+1/π sin(π*Φ/ε)) |Φ|<ε

Hε(Φ)=1 Φ>ε

The syntax of the function is heaviside(.,.), where the first
argument is Φ and the second ε.

Interpolate : performs a linear interpolation, based on the
given data. Two arguments are required: a list of pairs (ξ,η),
defining a polylineal curve, and a function defining the
point (ξ) where the evaluation is to be done. Syntax:

interpolate(#ξ1,η1,ξ2,η2,ξ3,η3,...#.).

InterpolateSpline : performs a spline interpolation, based on
the given data. Two arguments are required: a list of pairs
(ξ,η), defining a the curve, and a function defining the the
point (ξ) where the evaluation is to be done. Syntax:
interpolatespline(#ξ1,η1,ξ2,η2,ξ3,η3,...#.).

InterpolateFile : performs a spline interpolation, based on
the data given in a file. Two arguments are required: a file
name where a list of pairs (ξ,η), defining a the curve, is
given, and a function defining the the point (ξ) where the
evaluation is to be done. Syntax: Interpolatefile(., .), where
the first argument in the filename, and the second a
function defining the value.

srand : The rand function returns a pseudorandom integer
in the range 0 to 1, based on the argument given as seed.
Syntax: srand(.).

int : Integer conversos. Syntax: int(.).

- : change sign operator. Syntax: (-expression).

j0 : Calculates Bessel function of first kind and order 0, at
the given point. Syntax: j0(.).

j1 : Calculates Bessel function of first kind and order 1, at
the given point. Syntax: j1(.).

jn : Calculates Bessel function of first kind and order n, at
the given point. Syntax: jn(.,.), where the first argument is
the evaluation point and the second is the order of the
Bessel function.
y0 : Calculates Bessel function of second kind and order 0,
at the given point. Syntax: y0(.).

y1 : Calculates Bessel function of second kind and order 1,
at the given point. Syntax: y1(.).

yn : Calculates Bessel function of second kind and order n,
at the given point. Syntax: yn(.,.), where the first argument
is the evaluation point and the second is the order of the
Bessel function.
Readfile : Execute the function in the ASCII file defined by
the argument. The file must include a first line defining the
maximum time to use the function and a second line
containing the function to be executed. If the current time
is greater than the one defined in the file, the execution is
paused until the file is updated.

Syntax readfile(.) where the argument is the path and name of
the file. Example readfile(C:\Temp\velx.dat). Example of file
format:

Time = 0.1;
Function = "interpolate(#0.0,1.1,1.0,2.0#t);";

Tcl : Executes a TCL script or procedure returning a double
value.

Syntax tcl(.) where the argument is the script to be executed.
Example tcl(set var) return the value of tcl variable var.

Note: In order to use this function, TCL extension must be
enabled by activating Tcl extension.

CloudOfDataFile : performs a local interpolation based on
the cloud of points (x,y,z) and data (¸) given in a file. The
argument is the path and name of the text file. Syntax:
CloudOfDataFile(·), where the argument in the filename.
Example CloudOfDataFile(C:\Temp\velx.dat). Example of file
format:

0.0 0.0 0.0 1.0
0.0 1.0 0.0 0.5
1.0 1.0 1.0 2.0

Compass - http://www.compassis.com
30

SeaFEM reference manual

5.0 2.5 2.0 5.0
Examples:
2*sqrt(dy)

dx*fac(5)
srand(0)
log(abs(dx))

exp(5)

interpolate(#1.0,2.0,2.0,2.5,3.0,2.0#t^2)

Specific variables:

Furthermore, the following variables can be used in the
definition of functions. Note that some of these variables refer
to the main body (index 1). In order to access the corresponding
variable for other bodies, the index of the body must be given in
parentheses (examples: dx(2)[0,0,0], vx(3)).

GENERAL VARIABLES

 time or t : Process time (unit: s).

 gravity or g : Magnitud of gravity (unit: m/s2).

 density : Fluid density (unit; kg/m·s2).

 ts or dt : time increment (unit: s).
 Init_factor : returns the current initialization factor (if the
initialization time option is used)

WAVE SPECTRUM VARIABLES

 Hs : Significant wave height (unit: m).

 Tm : Mean wave period (unit: s).

 W_s : Wave frequency (unit: s-1)

 Gamma_s : Wave direction (unit: º).

MESH GENERAL VARIABLES

These variables may be employed in the definition of boundary
conditions varying in space thus resulting in functions that need
to be evaluated at every boundary mesh node (for example to
define the pressure distribution field within the pressurized free
surface boundary condition).

 x, y, z : coordinates of mesh points.

FREE SURFACE VARIABLES

 eta[idNode] : Free surface elevation at the specified node

 eta_prev[idNode] : Free surface elevation at the specified
node (previous step)

 x[idNode] : x coordinate at the specified node idNode

 y[idNode] : y coordinate at the specified node idNode

BODY's VARIABLES

 vol(idx) or volume(idx) : Water volume displaced by body
idx (unit: m3).
 disp : Mass of water displaced by body (unit: kg).

 Wet_surface : Area of body surface under still water level
(unit: m2).
 xc(idx) : X coordinate of the buoyancy center of body idx
(unit: m).
 yc(idx) : Y coordinate of the buoyancy center of body idx
(unit: m).
 zc(idx) : Z coordinate of the buoyancy center of body idx
(unit: m).

 xg(idx) : X coordinate of the buoyancy center of body idx
(unit: m).
 yg(idx) : Y coordinate of the buoyancy center of body idx
(unit: m).
 zg(idx) : Z coordinate of the buoyancy center of body idx
(unit: m).
 k11(idx) : Surge hydrostatic restoring coeficient of body idx.
(unit: N/m).
 k22(idx) : Sway hydrostatic restoring coeficient of body idx.
(unit: N/m).
 k33(idx) : Heave hydrostatic restring coeficient of body idx.
(unit: N/m).
 k44(idx) : Roll hydrostatic restoring coeficient of body idx.
(unit: N/rad).
 k55(idx) : Pitch hydrostatic restoring coeficient of body idx.
(unit: N/rad).
 k66(idx) : Yaw hydrostatic restoring coeficient of body idx.
(unit: N/rad).
 mass(idx) : Mass of body idx. (unit: kg).

 Ixx(idx) : Inertial moment of body idx respect to X direction
and gravity center (unit: Kg·m2).

 Iyy(idx) : Inertial moment of body idx respect to Y direction
and gravity center. (unit: Kg·m2).

 Izz(idx) : Inertial moment of body idx respect to Z direction
and gravity center. (unit: Kg·m2).

 dx : Translation, in the x direction, of the main body gravity
center. (unit: m).
 dy : Translation, in the y direction, of the main body gravity
center. (unit: m).
 dz : Translation, in the z direction, of the main body gravity
center. (unit: m).
 dx(bodyIdx,stepIdx) : Returns the translation along the x
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: m).

 dy(bodyIdx,stepIdx) : Returns the translation along the y
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: m).

 dz(bodyIdx,stepIdx) : Returns the translation along the z
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: m).

 dx[xi ,yi ,zi]: Translation, in the x direction, of an arbitrary
point with coordinates [xi ,yi ,zi] respect to the gravity
center. (unit: m).
 dy[xi ,yi ,zi]: Translation, in the y direction, of an arbitrary
point with coordinates [xi ,yi ,zi] respect to the gravity
center. (unit: m).
 dz[xi ,yi ,zi]: Translation, in the z direction, of an arbitrary
point with coordinates [xi ,yi ,zi] respect to the gravity
center. (unit: m).
 ldsx : Translation, in the x direction in the local frame. (unit:
m).
 ldsy : Translation, in the y direction in the local frame. (unit:
m).
 ldsz : Translation, in the z direction in the local frame. (unit:
m).
 rx : Rotation, around the x direction, of the body gravity
center. (unit: rad).
 ry : Rotation, around the y direction, of the body gravity
center. (unit: rad).

Compass - http://www.compassis.com
31

SeaFEM reference manual

 rz : Rotation, around the z direction, of the body gravity
center. (unit: rad).
 rx(body,stepIdx) : Returns the rotation around the x
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: rad).

 ry(body,stepIdx) : Returns the rotation around the y
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: rad).

 rz(body,stepIdx) : Returns the rotation around the z
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: rad).

 lrx : Rotation, around the x direction in the local frame.
(unit: rad).
 lry : Rotation, around the y direction in the local frame.
(unit: rad).
 lrz : Rotation, around the z direction in the local frame.
(unit: rad).
 vx : Body velocity in the x direction. (unit: m/s).

 vy : Body velocity in the y direction. (unit: m/s).

 vz : Body velocity in the z direction. (unit: m/s).

 vx(body,stepIdx) : Returns the velocity in the x direction of
the body given by bodyIdx at a previous time step given by
stepIdx. (unit: m/s).

 vy(body,stepIdx) : Returns the velocity in the y direction of
the body given by bodyIdx at a previous time step given by
stepIdx. (unit: m/s).

 vz(body,stepIdx) : Returns the velocity in the z direction of
the body given by bodyIdx at a previous time step given by
stepIdx. (unit: m/s).

 wx: Body angular velocity around the x direction. (unit:
rad/s).
 wy: Body angular velocity around the y direction. (unit:
rad/s).
 wz: Body angular velocity around the z direction. (unit:
rad/s).
 wx(body,stepIdx) : Returns the angular velocity around the
x direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: rad/s).

 wy(body,stepIdx) : Returns the angular velocity around the
y direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: rad/s).

 wz(body,stepIdx) : Returns the angular velocity around the
z direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: rad/s).

 lvx : Body velocity in the x direction in the local frame. (unit:
m/s).
 lvy : Body velocity in the y direction in the local frame. (unit:
m/s).
 lvz : Body velocity in the z direction in the local frame. (unit:
m/s).
 lwx : Body angular velocity around the x direction in the
local frame. (unit: rad/s).
 lwy : Body angular velocity around the y direction in the
local frame. (unit: rad/s).
 lwz : Body angular velocity around the z direction in the
local frame. (unit: rad/s).

 ax : Body acceleration in the x direction. (unit: m/s2).

 ay : Body acceleration in the y direction. (unit: m/s2).

 az : Body acceleration in the z direction. (unit: m/s2).

 ax(bodyIdx,stepIdx) : Returns the acceleration in the x
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: m/s2).

 ay(bodyIdx,stepIdx) : Returns the acceleration in the y
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: m/s2).

 az(bodyIdx,stepIdx) : Returns the acceleration in the z
direction of the body given by bodyIdx at a previous time
step given by stepIdx. (unit: m/s2).

 lax : Body acceleration in the x direction in the local frame.
(unit: m/s2).
 lay : Body acceleration in the y direction in the local frame.
(unit: m/s2).
 laz : Body acceleration in the z direction in the local frame.
(unit: m/s2).
 arx : Body angular acceleration around the x direction.
(unit: rad/s2).
 ary : Body angular acceleration around the y direction.
(unit: rad/s2).
 arz : Body angular acceleration around the z direction.
(unit: rad/s2).
 arx(body,stepIdx) : Returns the angular acceleration around
the x direction of the body given by bodyIdx at a previous
time step given by stepIdx. (unit: rad/s2).

 ary(body,stepIdx) : Returns the angular acceleration around
the y direction of the body given by bodyIdx at a previous
time step given by stepIdx. (unit: rad/s2).

 arz(body,stepIdx) : Returns the angular acceleration around
the z direction of the body given by bodyIdx at a previous
time step given by stepIdx. (unit: rad/s2).

 larx : Body angular acceleration around the x direction in
the local frame. (unit: rad/s2).
 lary : Body angular acceleration around the y direction in
the local frame. (unit: rad/s2).
 larz : Body angular acceleration around the z direction in
the local frame. (unit: rad/s2).
 HPFx_body : X component of the force due to the
hydrostatic pressure over the body. (unit: N).

 HPFy_body : Y component of the force due to the
hydrostatic pressure over the body. (unit: N).

 HPFz_body : Z component of the force due to the
hydrostatic pressure over the body. (unit: N).

 HPMx_body : X component of the moment due to the
hydrostatic pressure over the body. (unit: N·m).

 HPMy_body : Y component of the moment due to the
hydrostatic pressure over the body. (unit: N·m).

 HPMz_body : Z component of the moment due to the
hydrostatic pressure over the body. (unit: N·m).

 PFx_body : X component of the force due to dynamic
pressure over body. (unit: N).

 PFy_body : Y component of the force due to dynamic
pressure over body. (unit: N).

 PFz_body : Z component of the force due to dynamic
pressure over body. (unit: N).

 PMx_body : X component of the moment due to dynamic
pressure over body. (unit: N·m).

 PMy_body : Y component of the moment due to dynamic

Compass - http://www.compassis.com
32

SeaFEM reference manual

pressure over body. (unit: N·m).

 PMz_body : Z component of the moment due to dynamic
pressure over body. (unit: N·m).

 TFx_body : X component of the total force over body. (unit:
N).
 TFy_body : Y component of the total force over body. (unit:
N).
 TFz_body : Z component of the total force over body. (unit:
N).
 TMx_body : X component of the total moment over body.
(unit: N·m).
 TMy_body : Y component of the total moment over body.
(unit: N·m).
 TMz_body : Z component of the total moment over body.
(unit: N·m).
 Fx_drift : X component of the drift load due up to first order
terms over body. (unit: N).

 Fy_drift : Y component of the drift load due up to first order
terms over body. (unit: N).

 Fz_drift : Z component of the drift load due up to first order
terms over body. (unit: N).

 Mx_drift : X component of the drift moment due up to first
order terms over body. (unit: N·m).

 My_drift : Y component of the drift moment due up to first
order terms over body. (unit: N·m).

 Mz_drift : Z component of the drift moment due up to first
order terms over body. (unit: N·m).

 Fx_Pdrift : X component of the drift load due up to first
order terms over body. (unit: N).

 Fy_Pdrift : Y component of the drift load due up to first
order terms over body. (unit: N).

 Fz_Pdrift : Z component of the drift load due up to first
order terms over body. (unit: N).

 Mx_Pdrift : X component of the drift moment due up to first
order terms over body. (unit: N·m).

 My_Pdrift : Y component of the drift moment due up to first
order terms over body. (unit: N·m).

 Mz_Pdrift : Z component of the drift moment due up to first
order terms over body. (unit: N·m).

 RFx_body : X component of the reaction loads over body.
(unit: N).
 RFy_body : Y component of the reaction loads over body.
(unit: N).
 RFz_body : Z component of the reaction loads over body.
(unit: N).
 RMx_body : X component of the reaction moments over
body. (unit: N·m).

 RMy_body : Y component of the reaction moments over
body. (unit: N·m).

 RMz_body : Z component of the reaction moments over
body. (unit: N·m).

Deprecated variables

 dx_prev : Return body's displacement (previous step)

 dy_prev : Return body's displacement (previous step)

 dz_prev : Return body's displacement (previous step)

 rx_prev : Rotation, around the x direction, of the body
gravity center (previous step). (unit: rad).

 ry_prev : Rotation, around the x direction, of the body
gravity center (previous step). (unit: rad).

 rz_prev : Rotation, around the x direction, of the body
gravity center (previous step). (unit: rad).

 vx_prev : Body velocity in the x direction (previous step).
(unit: m/s).
 vy_prev : Body velocity in the y direction (previous step).
(unit: m/s).
 vz_prev : Body velocity in the z direction (previous step).
(unit: m/s).
 wx_prev : Body angular velocity around the x direction
(previous step). (unit: rad/s).

 wy_prev : Body angular velocity around the y direction
(previous step). (unit: rad/s).

 wz_prev : Body angular velocity around the z direction
(previous step). (unit: rad/s).

 ax_prev : Body acceleration in the x direction (previous
step). (unit: m/s2).

 ay_prev : Body acceleration in the y direction (previous
step). (unit: m/s2).

 az_prev : Body acceleration in the z direction (previous
step). (unit: m/s2).

 arx_prev : Body angular acceleration around the x direction
in the local frame. (unit: rad/s2).
 ary_prev : Body angular acceleration around the y direction
in the local frame. (unit: rad/s2).
 arz_prev : Body angular acceleration around the z direction
in the local frame. (unit: rad/s2).

PRESSURIZED FREE SURFACE VARIABLES

 Flux : Vertical airflow displaced by pressurized free
surfaces. (unit: m3/s).
 Flux(Idx,stepIdx): Returns the vertical airflow displaced by
the pressurized free surfaces indicated by Idx at a previous
time step indicated by stepIdx. (unit: m3/s).

 areap : Area of pressurized free surface (unit: m2).

 areapxm : X component of the gravity center of the
pressurized free surface (unit: m).

 areapym : Y component of the gravity center of the
pressurized free surface (unit: m).

 Pave : Average pressure applied over pressurized free
surface (unit: Pa).
 P : Total pressure applied over pressurized free surface
(unit: Pa).
 P(Idx,stepIdx) : Returns the total pressure applied over the
pressurized free surfaces indicated by Idx at a previous
time step indicated by stepIdx. (unit: Pa).

 vol_P : Volume occupied by the pressurized free surface
elevation (unit: m3).
 vol_P(body,stepIdx) : Returns the volume occupied by the
pressurized free surfaces indicated by Idx at a previous
time step indicated by stepIdx. (unit: m3).

 Fx_Pfs : X component of the force due to the pressure over
the pressurized free surface (unit: N).

 Fy_Pfs : Y component of the force due to the pressure over
the pressurized free surface (unit: N).

 Fz_Pfs : Z component of the force due to the pressure over

Compass - http://www.compassis.com
33

SeaFEM reference manual

the pressurized free surface (unit: N).

 Mx_Pfs : X component of the moment due to the pressure
over the pressurized free surface (unit: N·m).

 My_Pfs : Y component of the moment due to the pressure
over the pressurized free surface (unit: N·m).

 Mz_Pfs : Z component of the moment due to the pressure
over the pressurized free surface (unit: N·m).

Deprecated variables

 Flux_prev: Vertical airflow displaced by pressurized free
surfaces at previous time step. (unit: m3/s).

 P_prev : Total pressure applied over pressurized free
surface at previous time step (unit: Pa).

 vol_P_prev : Volume occupied by the pressurized free
surface elevation at previous time step (unit: m3).

HEIGHT-LIMITED FREE SURFACE CONDITION VARIABLES

 Fx_Hfs : X component of the force due to the pressure over
the height-limited free surface (unit: N).

 Fy_Hfs : Y component of the force due to the pressure over
the height-limited free surface (unit: N).

 Fz_Hfs : Z component of the force due to the pressure over
the height-limited free surface (unit: N).

 Mx_Hfs : X component of the moment due to the pressure
over the height-limited free surface (unit: N·m).

 My_Hfs : Y component of the moment due to the pressure
over the height-limited free surface (unit: N·m).

 Mz_Hfs : Z component of the moment due to the pressure
over the height-limited free surface (unit: N·m).

3.17. Appendix B: Tcl extension

SeaFEM can be extended by using the Tcl scripting language.
Tcl, or the "Tool Command Language", is a very simple, open-
source-licensed programming language. Tcl provides basic
language features such as variables, procedures, and control,
and it runs on almost any modern OS, such as Unix, MacOS and
Windows computers. But the key feature of Tcl is its
extensibility.

You may find further information on Tcl at:

http://wiki.tcl.tk/969

SeaFEM distribution includes a basic installation of Tcl, that
allows to efficiently implement new capabilities in SeaFEM.
However full Tcl installation provides many tool-kits and
libraries that can help in the implementation of above mentions
SeaFEM extensions.

The full Tcl version can be downloaded from:

http://www.activestate.com/activetcl/

Finally, Ramdebbuger software can be used for editing and
debugging Tcl code. Ramdebugger is free to use and can be
downloaded from:

http://www.compassis.com/ramdebugger

3.17.1. Initiating Tcl extension

SeaFEM Tcl extension is initiated by selecting the Tcl extension
option available in the General data (Tcl data) page as shown in
the following picture. If the check-box is selected, the Tcl
extension of SeaFEM is activated. The entry must indicate a Tcl

script to be interpreted during execution.

The Tcl script used for the SeaFEM extension can implement
some standard SeaFEM Tcl event procedures (see Tcl interface
procedures). These procedures (listed below) are automatically
called by SeaFEM during execution, when the Tcl interface is
activated.

SeaFEM Tcl extension includes a basic library for vector
operation and manipulation. Further information on the Tcl
math library can be found in the Tdyn manual.

The functions for vector manipulation can operate with
temporal vector created from Tcl code and with internal SeaFEM
variable vectors. Internal SeaFEM vectors can be accessed from
the Tcl extension using standard names. A list of the SeaFEM
vectors that can be accesses from the Tcl interface are provided
next:

wxn
d vector of x coordinates of the mesh nodes.
wyn
d vector of y coordinates of the mesh nodes.

wzn
d vector of z coordinates of the mesh nodes.

wph
1

vector of potential (Φ) nodal values (current value at t).

wph
x

vector of nodal values of the x derivatives of the potential
(Φ).

wph
y

vector of nodal values of the y derivatives of the potential
(Φ).

wph
z

vector of nodal values of the z derivatives of the potential
(Φ).

wph
2

vector of potential (Φ) nodal values (previous value at t-
dt).

whfl vector of nodal values of the free surface elevation height
limit.

whf
p

vector of nodal values of the pressure obtained due to
free surface elevation height limit.

3.17.2. Tcl interface procedures

The Tcl script used for the SeaFEM extension can implement
some of the following Tcl event procedures (as well as other
user-defined procedures). These procedures (listed below) are
automatically called by SeaFEM during execution, when the Tcl
interface is activated. Their syntax corresponds to the standard
Tcl language.

TdynTcl_InitiateProblem

This procedure is called at the beginning of the execution, once
all the data structures have been created.

http://wiki.tcl.tk/969
http://wiki.tcl.tk/969
http://www.activestate.com/activetcl/
http://www.activestate.com/activetcl/
http://www.compassis.com/ramdebugger
http://www.compassis.com/ramdebugger

Compass - http://www.compassis.com
34

SeaFEM reference manual

TdynTcl_FinishProblem

This procedure is called at the end of the execution of the
current problem.

TdynTcl_StartSetProblem

This procedure is called before the creation of the main
structures of the problem.

TdynTcl_EndSetProblem

This procedure is called once the creation of the main structures
of the problem is finished.

TdynTcl_StartNewStep

This procedure is called when a new time step is started.

TdynTcl_FinishStep

This procedure is called when a time step is finished.

TdynTcl_StartNewIteration

This procedure is called when a new iteration is started.

TdynTclFinishIteration

This procedure is called when an iteration is finished.

TdynTcl_CreateBodyLinks or TdynTcl_DefineBodyData

This procedure is called to initiate the body link conditions.

TdynTcl_CreateMooring

This procedure is called to create mooring lines.

TdynTcl_InitiateHfs

This procedure is called within the algorithm of definition of the
free surface height (HFreeSurface condition). Within this
procedure, the vector whfl should be initiated.

TdynTcl_WriteResults time

This procedure is called after writing the results of the step. The
argument gives the current time for writing the result data.
Note that this procedure is only called for the time steps
specified in the input data for writing results.

TdynTcl_StartTimeLoop

This procedure is called just before to start the time loop of the
problem.

Furthermore, most of Tcl commands included in the Tdyn Tcl
interface can be also used in SeaFEM (see Tdyn user manual for
further information). Additionally, several specific procedures
are also available. These are described in the following:

TdynTcl_Time

Returns the current simulation time.

TdynTcl_Dt

Returns the current time increment.

TdynTcl_Insert_Interpolator_Mesh interpolator_name
initial/final mesh_id

This procedure can be used to insert an internal SeaFEM mesh (
mesh_id) in a interpolator structure (interpolator_name). The

available meshes are: fluid, body, frees, outlet, inlet, pfrees and
hfrees. See Examples of scripts defining a Tcl extension for
further information.

TdynTcl_Read_Interpolator_Mesh_ForHfs interpolator_name
initial/final mesh_file vector_id

This procedure can be used to insert a mesh in GiD format (
mesh_file) in a interpolator structure (interpolator_name) for
imposing a free surface height condition. See Examples of
scripts defining a Tcl extension for further information.

TdynTcl_Create_Mooring_Segment body type xi yi zi xe ye ze w L
A E [SN d1 d2]

This procedure can be used to create a mooring line. The
different options to create mooring lines are presented in the
section Appendix E: Mooring definition by Tcl. The arguments
passed to this procedure are listed in what follows. Note that
arguments within brackets only apply for certain types of
mooring types (see argument's description below).

body : index of the body which the mooring is linked to (from 1
to n).

type : this parameter determines the type of mooring segment
to be used. The possible values of this parameter are:

type = 1 - quasi-static elastic bar (spring able to work in
both, tension and compression regimes).

type = 2 - quasi-static catenary

type = 3 - quasi-static cable (spring able to work only in
tension)
type = 4 - quasi-static elastic catenary

type = 6 - dynamic cable

xi [m] : x coordinate of the initial point of the mooring segment
(this must be the point closer to the body)

yi [m] : y coordinate of the initial point of the mooring segment
(this must be the point closer to the body)

zi [m] : z coordinate of the initial point of the mooring segment
(this must be the point closer to the body)

xe [m] : x coordinate of the end point of the mooring segment

ye [m] : y coordinate of the end point of the mooring segment

ze [m] : z coordinate of the end point of the mooring segment

w [N/m] : effective weight (actual weight minus bouyancy) per
unit length

L [m] : length of the segment

A [m2] : cross section area of the cable

E [Pa] : Young modulus

S : this is the seabed parameter. This argument has only effect
for type elastic catenary segments (type 4). If it is provided for
other mooring types, it will be actually ignored. The possible
values of this parameter are:

S = 0 - the catenary is fixed to a seabed point

S = 1 - considers a sandy seabed contact

S = 2 - considers a sliding seabed wire

S = 3 - considers a sliding seabed chain

Compass - http://www.compassis.com
35

SeaFEM reference manual

N : This argument only applies in the case of dynamic cables
(type 6). It indicates the number of line elements for cable
geometric discretization.

d1, d2 : User defined damping ratios.

TdynTcl_Create_Mooring_Link

This procedure creates a link between different mooring lines.
The different options to create links are presented in the section
Appendix E: Mooring definition by Tcl.

TdynTcl_Set_Mooring_Displacement seg1 fun1 fun2 fun3

This procedure can be used to specify the displacement of one
end of the mooring line. The arguments are:

seg1 : identifier variable corresponding to the segment

fun1 : index of the function describing the time-dependent
displacement in OX of the end point of the mooring segment

fun2 : index of the function describing the time-dependent
displacement in OY of the end point of the mooring segment

fun3 : index of the function describing the time-dependent
displacement in OZ of the end point of the mooring segment

TdynTcl_Configure_Mooring_Segment Gk Gc Gu Cd Cf Cm
alpha_bs gamma_bs bci steps

This procedure can be used to configure already existing
mooring segments. It is only available for mooring segments of
cable type. The arguments are:

Gk : seabed interaction parameter that specifies the ground
normal stiffness per unit length (Pa/m)

Gc : seabed interaction parameter that specifies the ratio of
critical damping of ground

Gu : seabed interaction parameter that specifies the friction
coefficient

Cd : drag force parameter that specifies the value of the
tangential drag coefficient

Cf : drag force parameter that specifies the value of the normal
drag coefficient

Cm : added mass coefficient

alpha_bs : coefficient of the Bossak-Newmark method

gamma_bs : dissipation term for the treatment of boundary
conditions

bci : this parameter defines the boundary conditions to be
applied for cable analysis

bci = 1 - acceleration is imposed

bci = 0 - the node is free

steps : number of substeps to be used in the iterative solution
process of the dynamic cable

TdynTcl_Configure_Mooring_Segment id load_curve [list e1 F1
e2 F2 ... en Fn]

This procedure can be used to define a load-extension curve for
a given dynamic cable. The arguments are:

id : index that identifies the cable to which the load-curve is
going to be applied

load_curve : a literal command that must be provided to indicate
that this is a load-curve mooring configuration command
(different from the generic mooring configuration command
explained above)

[list e1 F1 e2 F2 ... en Fn] : a list tcl command used to provide
pairs of extension-load (e-F) points that define the actual load
curve.

TdynTcl_CreateBodyLinks

TdynTcl_CreateBodyLink can be used to create correlations
between degrees of freedom from different bodies. This is
internally implemented by using a Lagrange's multipliers
approach. This essentially consists on adding a matrix of
restrictions to the bodies dynamics, each row of that matrix
corresponding to the equation defining a link. The arguments
passed to this function are triads of values that consecutively
define the various coefficients of the link equation. To this aim,
each triad consists on an integer identifying the body, another
integer identifying the degree of freedom and a real value
setting the corresponding coefficient value. An additional
argument is given at the end to specify an optional independent
coefficient that could exist for a given link equation.

The different options to create body links are presented in the
section Appendix D: Multi-body analysis.

TdynTcl_Give_Motions_For_Mesh body_id time mesh_file

This procedure calculates the displacements, velocities and
acceleration of the nodes of a mesh (mesh_file in GiD format)
calculated from the motion data of the body body_id. The
evaluation is done for time time. See Examples of scripts
defining a Tcl extension for further information.

TdynTcl_Add_Mass_Matrix body_id [list x y z] mass_matrix

This procedure can be called first within the
TdynTcl_InitiateProblem procedure to set the mass matrix of the
body. The mass matrix must be a 6x6 matrix (given as a list of
36 elements) containing the mass and inertia elements of the
different degrees of freedom of the body (surge, sway, heave,
roll, pitch and yaw) refered to a point given by the coordinates (
x ,y,z) that are also passed as a list argument to the procedure.
This procedure overwrites the definition of mass and inertia
inserted in the user interface. This procedure can be called
within TdynTcl_StartNewStep to update the mass matrix of the
body from that time step. In that case, the procedure
TdynTcl_Build_Mass_Matrixes must be called afterwards. The
arguments are:

body_id : index of the body to define the mass matrix (from 1 to
n).

x y z : real values (given as a list) corresponding to the
coordinates of the reference point for which the mass matrix is
provided.

mass_matrix : list of 36 elements containing the mass and inertia
elements of the different degrees of freedom of the body
(surge, sway, heave, roll, pitch and yaw). Such a mass matrix
refers to the point specified by the x y z arguments.

See Examples of scripts defining a Tcl extension for a usage
example.

TdynTcl_Add_Damping_Matrix body_id [list x y z]
damping_matrix

This procedure can be called first within the

Compass - http://www.compassis.com
36

SeaFEM reference manual

TdynTcl_InitiateProblem procedure to set the damping matrix of
the body. The damping matrix must be a 6x6 matrix (given as a
list of 36 elements) containing the damping terms
corresponding to the different degrees of freedom of the body
(surge, sway, heave, roll, pitch and yaw) refered to a point given
by the coordinates (x,y,z) that are also passed as a list argument
to the procedure. This procedure can be called within
TdynTcl_StartNewStep to update the damping matrix of the body
from that time step. The arguments are:

body_id : index of the body to define the stiffness matrix (from 1
to n).

x y z : real values (given as a list) corresponding to the
coordinates of the reference point for which the mass matrix is
provided.

damping_matrix : list of 36 elements containing the damping
terms corresponding to the different degrees of freedom of the
body (surge, sway, heave, roll, pitch and yaw).

TdynTcl_Add_Stiffness_Matrix body_id [list x y z] stiffness_matrix

This procedure can be called first within the
TdynTcl_InitiateProblem procedure to set the stiffness matrix of
the body. The stiffness matrix must be a 6x6 matrix (given as a
list of 36 elements) containing the stiffness terms
corresponding to the different degrees of freedom of the body
(surge, sway, heave, roll, pitch and yaw) refered to a point given
by the coordinates (x,y,z) that are also passed as a list argument
to the procedure. This procedure can be called within
TdynTcl_StartNewStep to update the stiffness matrix of the body
from that time step. The arguments are:

body_id : index of the body to define the stiffness matrix (from 1
to n).

x y z : real values (given as a list) corresponding to the
coordinates of the reference point for which the mass matrix is
provided.

stiffness_matrix : list of 36 elements containing the stiffness
terms corresponding to the different degrees of freedom of the
body (surge, sway, heave, roll, pitch and yaw).

TdynTcl_Give_Pressure_For_Mesh body_id time mesh_File

This procedure can be called to get the total pressure over the
surface of a given body. Such pressure data is returned in the
form of a list of pressure values for every node of the mesh
provided. These pressure values are calculated by interpolating
from the mesh of the required body. The arguments are:

body_id : index of the body from which we want to obtain the
total pressure.

time : time to be reported together with the pressure
information

mesh_File : name of the file containing the mesh (in GiD format)
to which we want to interpolate the pressure data of the given
body.

TdynTcl_Set_Pfreesurface_Pressure Idx press

This procedure can be called to specify the total pressure press
to be applied over the free surface of the PFreeSurface
condition identified by Idx. The arguments are:

Idx: index of the PFS condition whose pressure is going to be
enforced.

press: total pressure value to be enforced over the free surface

of the given PFS condition.

3.17.3. Examples of scripts defining a Tcl
extension
The scripts below show examples of procedures defining a
SeaFEM Tcl extension. In order to execute these procedures,
they have to be saved to a file and the file has to be inserted in
the Tcl data page of General Data.

Tcl script example 1: Write a notice in info file

The following procedure (TdynTcl_StartNewStep) is executed at
the beginning of every time step. It just writes a message to the
standard SeaFEM output (Calculate > View process info...).

proc TdynTcl_StartNewStep { } {

 # Reading SeaFEM internal time
 set t [TdynTcl_Time]

 # Writing a message in SeaFEM info window
 TdynTcl_Message "Executing TdynTcl_StartNewStep: time $t"
notice

}

Tcl script example 2: Loading Tk package

The following script loads Tk package. Tk is Tcl a library,
including basic elements for building a graphical user interface.
Once this library is loaded, graphic elements can be created
from the Tdyn Tcl interface. In this example, a text window is
created and then every time step, the text "Step
$Current_Step$" is printed in that window.

In the following code, the full Tcl installation is assumed to be in
the directory "C:\Program Files\Tcl\lib". The full Tcl installation
can be downloaded from http://www.activestate.com/activetcl/.

Define directory of the Tcl installation

lappend ::auto_path {C:\Program Files\Tcl\lib}

TdynTcl_Message [package require Tk] notice

Creates a text window

pack [text .t -width 70 -height 20]

Prints information in the text window

proc TdynTcl_StartNewStep { } {

 set time [TdynTcl_Time]

 .t ins end "Time $time\n" ; .t see end ; update

}

Tcl script example 3: Initiate Hfs

The following script initiate the free surface height of a surface
(with HFreeSurface condition applied) interpolating the z
coordinate from a mesh file in GiD format (mesh.msh).

proc TdynTcl_InitiateHfs {} {

 #Initiate elevation

 TdynTcl_Message "Initiate z!!!" notice

 set inter2 [TdynTcl_Create_Interpolator]

http://www.activestate.com/activetcl/

Compass - http://www.compassis.com
37

SeaFEM reference manual

 set tmpvec [::mather::mkvector 1 0.0]

 TdynTcl_Insert_Interpolator_Mesh $inter2 initial hfrees

 TdynTcl_Read_Interpolator_Mesh_ForHfs $inter2 final "mesh.msh"
$tmpvec

 TdynTcl_OnInitial_Interpolator $inter2 $tmpvec whfl

 TdynTcl_Release_Interpolator $inter2

 vmdelete $tmpvec

}

Tcl script example 4: Communicate SeaFEM with Ramseries
using HFreeSurface condition

The following script communicates in calculation time SeaFEM
with Ramseries. SeaFEM sends to Ramseries (every time step)
the pressure calculated on a HFreeSurface condition. Ramseries
uses this information to apply a pressure load on the structure
and send back the displacements of the structure, used in
SeaFEM to update HFreeSurface condition (height elevation).

proc TdynTcl_InitiateHfs {} {

 #Initiate elevation

 TdynTcl_Message "Initiate z!!!" notice

 set inter2 [TdynTcl_Create_Interpolator]

 set tmpvec [::mather::mkvector 1 0.0]

 TdynTcl_Insert_Interpolator_Mesh $inter2 initial hfrees

 TdynTcl_Read_Interpolator_Mesh_ForHfs $inter2 final "mesh.msh"
$tmpvec

 TdynTcl_OnInitial_Interpolator $inter2 $tmpvec whfl

 TdynTcl_Release_Interpolator $inter2

 vmdelete $tmpvec

}

proc TdynTcl_InitiateProblem {} {

 global myvec myvec2 myvec3 myrec nnode inter

 # nnRam must be set to the number of nodes of the structural mesh
(fingers.msh)

 set nnRam 2619

 # Create the vectors

 set myvec [::mather::mkvector $nnRam 0.0]

 set myrec [::mather::mkvector $nnRam 0.0]

 set myvec2 [::mather::mkvector $nnRam 0.0]

 set myvec3 ""

 # Init coupling

 mather_initcoupling 0 2010 100000

 TdynTcl_Message "Connected!!!" notice

 # Insert mesh for interpolation (mesh.msh is the structural mesh)

 mather_insertcouplingmesh "mesh.msh"

 # Init interpolator structure to pass information from the updated
HFs mesh to fingers.msh

 set inter [TdynTcl_Create_Interpolator]

 TdynTcl_Insert_Interpolator_Mesh $inter initial hfrees

 TdynTcl_Read_Interpolator_Mesh $inter final "mesh.msh"

}

proc TdynTcl_StartNewStep {} {

 global myvec myvec2 myvec3 myrec nnode inter

 set step [TdynTcl_Time]

 TdynTcl_Message "-------> Interpolate data of pressure to the
structural mesh" notice

 TdynTcl_OnFinal_Interpolator $inter whfp $myvec

 TdynTcl_Message "-------> Starts to send pressure vector for time
$step" notice

 # Note: Only first component (pressure) of the traction vector is sent

 mather_sendcouplingvector $myvec 0 $step

 TdynTcl_Message "-------> Vector sent for time $step" notice

}

proc TdynTcl_FinishStep {} {

#return

 global myvec myvec2 myvec3 myvec4 myrec nnode inter

 set step [TdynTcl_Time]

 TdynTcl_Message "-------> Starts to retrieve displacement increment
for time $step" notice

 # Only z component is used

 set data [mather_retrievecouplingheader]

 mather_retrievecouplingvector $myrec 0 $step

 set data [mather_retrievecouplingheader]

 mather_retrievecouplingvector $myrec 0 $step

 set data [mather_retrievecouplingheader]

 mather_retrievecouplingvector $myrec 0 $step

 TdynTcl_Message "-------> Info received for time $step" notice

 # Convergence check

 mather_sendcouplingconvergence $step 1

 set conv [mather_retrievecouplingconvergence]

 TdynTcl_Message "-------> Convergence check for time $step: $conv"
notice

 # Interpolate and update the displacement

 if { $myvec3 eq "" } {

 set myvec3 [::mather::mkvector [::mather::vector_info length whfl]
0.0]

Compass - http://www.compassis.com
38

SeaFEM reference manual

 set myvec4 [::mather::mkvector [::mather::vector_info length whfl]
0.0]

 }

 TdynTcl_OnInitial_Interpolator $inter $myrec $myvec3

 vmexpr whfl+=$myvec3

 TdynTcl_Message "-------> TdynTcl_FinishStep" notice

}

Tcl script example 5: Debugging a Tcl script with
Ramdebugger

RamDebugger is a graphical debugger for Tcl-TK. With
RamDebugger, it is possible to make Local Debugging, where
the debugger starts the program to be debugged. and Remote
debugging, where the program to debug is already started and
RamDebugger connects to it. The latter option will be used in
this case.

Remark:
In Windows, it is necessary to load the package comm (not
the standard, but the one modified in RamDebugger), in
order to debug the program remotely.

To debug the following example:

1. open it with Ramdebugger and set a breakpoint in the line
"TdynTcl_Message "Set a breakpoint in this line" notice".

2. Then execute Tdyn, and wait for a few seconds, until the
execution freezes.

3. Go to Ramdebugger and select

File ► Debug on ► Tdyn

4. Tdyn execution will restant until the breakpoint is find.

Remark:
If Tdyn is not included in the list of "Remote TCL
debugging" programs, update the list by selecting

File ► Debug on ► Update remotes

Load package commR

Change the directory below with the one where Ramdebugger is
intalled

lappend ::auto_path {C:/Utils/RamDebugger7.0/addons}

TdynTcl_Message [package require commR] notice

This register Tdyn for debugging

comm::register Tdyn 1

Add breakpoint beyond this point.

breakpoints only work inside a proc.

proc TdynTcl_FinishStep {} {

TdynTcl_Message "Set a breakpoint in this line" notice
TdynTcl_Message "Click the arrow button to go to this line"
notice

}

Program gets stopped here waiting for the debugger to connect

commR::wait_for_debugger

Tcl script example 6: Calculating rigid body motions for a
mesh

The following script calculates rigid body displacements,
velocities and accelerations for the nodes of a given mesh (GiD
ASCII format) and writes the results in an ASCII file (GiD format).

proc TdynTcl_InitiateProblem { } {

 global resfile mshfile

 set mshfile "C:/Users/julio/Desktop/Current/spar_mesh.msh"

 set resfile "C:/Temp/spar_acc.res"

 set fileid [open $resfile w+]

 puts $fileid "GiD Post Results File 1.0"

 close $fileid

}

proc TdynTcl_WriteResults { time } {

 global resfile mshfile

 # Arguments for TdynTcl_Give_Motions_For_Mesh are body_index,
time and mesh_file_name

 set acclist [TdynTcl_Give_Motions_For_Mesh 1 $time $mshfile]

 set fileid [open $resfile a]

 puts $fileid "Result \"Displacement (m)\" Body $time Vector
OnNodes"

 puts $fileid "Values"

 set i 1

 foreach inode $acclist {

 puts $fileid "$i [lrange $inode 0 2]"

 incr i

 }

 puts $fileid "End Values"

 puts $fileid "Result \"Velocity (m/s)\" Body $time Vector OnNodes"

 puts $fileid "Values"

 set i 1

 foreach inode $acclist {

 puts $fileid "$i [lrange $inode 3 5]"

 incr i

 }

 puts $fileid "End Values"

 puts $fileid "Result \"Acceleration (m/s2)\" Body $time Vector
OnNodes"

 puts $fileid "Values"

 set i 1

 foreach inode $acclist {

 puts $fileid "$i [lrange $inode 6 8]"

Compass - http://www.compassis.com
39

SeaFEM reference manual

 incr i

 }

 puts $fileid "End Values"

 close $fileid

}

Tcl script example 7: Create mooring lines

The following script creates 3 quasi-static catenary mooring
lines set at 120º to each other.

proc TdynTcl_CreateMooring { } {

 # Mooring line 1: type 2: catenary

 # arguments: body type xi[m] yi[m] zi[m] xe[m] ye[m] ze[m] w[N/m]
L[m] A[m2] E[Pa]

 set cat1 [TdynTcl_Create_Mooring_Segment 1 2 -380.0 0.0 -210.0
-4.15 0.0 -60.0 1350 -1 0.02 2.05e11]

 # Mooring line 2: type 2: catenary

 # arguments: type xi[m] yi[m] zi[m] xe[m] ye[m] ze[m] w[N/m] L[m]
A[m2] E[Pa]

 set cat2 [TdynTcl_Create_Mooring_Segment 1 2 190.0 329.1 -210.0
2.1 3.6 -60.0 1350 -1 0.02 2.05e11]

 # Mooring line 3: type 2: catenary

 # arguments: type xi[m] yi[m] zi[m] xe[m] ye[m] ze[m] w[N/m] L[m]
A[m2] E[Pa]

 set cat3 [TdynTcl_Create_Mooring_Segment 1 2 190.0 -329.1 -210.0
2.1 -3.6 -60.0 1350 -1 0.02 2.05e11]

 TdynTcl_Message "TdynTcl_CreateMooring finished!!!" notice

}

The following script creates a multi-segment delta line:

proc TdynTcl_CreateMooring { } {

 set type 3

 set area 1.13E-006

 set w 0.076

 set E 2.10E+011

 # segments

 set segA [create_mooring_segment $type -3.58 0.00 -2.07 -4.49 0.0
-4.78 $w 2.9370 $area $E 0]

 set segB [create_mooring_segment $type -1.28 0.00 -1.89 -3.58 0.0
-2.07 $w 2.5590 $area $E 0]

 set segC [create_mooring_segment $type -0.17 0.00 -0.64 -1.28 0.0
-1.89 $w 1.7620 $area $E 0]

 set segD [create_mooring_segment $type -0.32 0.00 -2.99 -1.28 0.0
-1.89 $w 1.5590 $area $E 0]

 # links

 create_mooring_link $segB $segA 230.0

 create_mooring_link $segC $segB $segD 0.0

}

The following script creates eight pre-stressed spring lines:

proc TdynTcl_CreateMooring { } {

 # Mooring lines: type 1: spring

 # arguments: body type xi[m] yi[m] zi[m] xe[m] ye[m] ze[m] w[N/m]
L[m] A[m2] E[Pa]

 set cat1 [TdynTcl_Create_Mooring_Line 1 1 -26.0 -2.6 -150.0 -26.0
-2.6 -47.0 386.7 102.52 0.00503 2.05e11]

 set cat2 [TdynTcl_Create_Mooring_Line 1 1 -26.0 2.6 -150.0 -26.0 2.6
-47.0 386.7 102.52 0.00503 2.05e11]

 set cat3 [TdynTcl_Create_Mooring_Line 1 1 26.0 -2.6 -150.0 26.0 -2.6
-47.0 386.7 102.52 0.00503 2.05e11]

 set cat4 [TdynTcl_Create_Mooring_Line 1 1 26.0 2.6 -150.0 26.0 2.6
-47.0 386.7 102.52 0.00503 2.05e11]

 set cat5 [TdynTcl_Create_Mooring_Line 1 1 -2.6 26.0 -150.0 -2.6 26.0
-47.0 386.7 102.52 0.00503 2.05e11]

 set cat6 [TdynTcl_Create_Mooring_Line 1 1 2.6 26.0 -150.0 2.6 26.0
-47.0 386.7 102.52 0.00503 2.05e11]

 set cat7 [TdynTcl_Create_Mooring_Line 1 1 -2.6 -26.0 -150.0 -2.6
-26.0 -47.0 386.7 102.52 0.00503 2.05e11]

 set cat8 [TdynTcl_Create_Mooring_Line 1 1 2.6 -26.0 -150.0 2.6 -26.0
-47.0 386.7 102.52 0.00503 2.05e11]

 TdynTcl_Message "TdynTcl_CreateMooring finished!!!" notice

}

The following script creates a mooring line (spring), defining the
displacement of the end point by functions.

proc TdynTcl_CreateMooring { } {

 set seg1 [TdynTcl_Create_Mooring_Segment 1 1 0.0 0.0 0.0 100.0 0.0
0.0 0.0 100.0 0.1 1.0e6]

 set fun1 [::mather::create_function waves "1.0*sin(0.5*t);"]

 set fun2 [::mather::create_function waves "0.0;"]

 set fun3 [::mather::create_function waves "0.0;"]

 TdynTcl_Set_Mooring_Displacement $seg1 $fun1 $fun2 $fun3

 TdynTcl_Message "TdynTcl_CreateMooringLine finished!!!" notice

}

Tcl script example 8: Creating functions

This script creates a function '0.9*density*volume;' at the
beginning of the execution. Then a procedure My_Mass is
created to evaluate that function. The procedure can be
accessed from SeaFEM function fields, by using 'tcl(My_Mass)'.

proc TdynTcl_InitiateProblem { } {

 global myfunc

 set myfunc [::mather::create_function waves "0.9*density*volume;"]

}

proc My_Mass { } {

 global myfunc

Compass - http://www.compassis.com
40

SeaFEM reference manual

 set ret [::mather::evaluate_function $myfunc]

 TdynTcl_Message "My_Mass = $ret" notice

 return $ret

}

Tcl script example 9: Creating a body link

In this example, a link is provided between the surge degree of
freedom of body 1 (x_1) and the surge and pitch degrees of
freedom (x_2 and ry_2) of body 2. In this equation coefficients
concerning x_1 and x_2 are 1.0 and -1.0 respectively, while the
coefficient concerning ry_2 is the z-distance between the gravity
center of the two bodies being equal to 2.0. No independent
term exists for this link.

proc TdynTcl_CreateBodyLinks { } {

 # x_1 - x_2 + (zg_2-zg_1)*ry_2 = 0

 set blnk2 [create_body_link 1 1 1.0 2 1 -1.0 2 5 +2.0 0.0]

 TdynTcl_Message "Body link 1 finished!!!" notice

}

Tcl script example 10: Interpolate to an external mesh the
pressure acting on a given body

The following script interpolates into an external mesh
repressenting a cylinder, the pressure acting on the main body
of the simulation (body number 1). The operation is performed
every time step and the results are written into a text file using
GiD results format.

proc TdynTcl_InitiateProblem { } {

 global mshfile resfile

 set mshfile "Cylinder.msh"

 set resfile "Cylinder.flavia.res"

 set fileid [open $resfile w+]

 puts $fileid "GiD Post Results File 1.0"

 close $fileid

}

proc TdynTcl_FinishStep { } {

 global mshfile resfile

 set time [TdynTcl_Time]

 set acclist [TdynTcl_Give_Pressure_For_Mesh 1 $time $mshfile]

 set fileid [open $resfile a]

 puts $fileid "Result \"Pressure (Pa)\" Body $time Scalar OnNodes"

 puts $fileid "Values"

 set i 1

 foreach inode $acclist {

 puts $fileid [lrange $inode 0 1]

 incr i

 }

 puts $fileid "End Values"

 close $fileid

}

Tcl script example 11: Defining a mass matrix

The following script illustrates how to define the mass matrix of
a body taking a generic point as the reference point for that
matrix. Note that the mass matrix can be directly introduced
within the graphic user interface of SeaFEM only in the case the
matrix is known for the center of gravity. Hence, the tcl script
procedure is usefull when the mass matrix is known from a
generic reference point that may differ from the center of
gravity. If this is the case, the mass matrix in the graphic user
interface is left empty an the following tcl script is used to set up
the mass matrix for the generic reference point. SeaFEM takes
care of transforming the mass matrix from the reference point
specified in the tcl script to the center of gravity or any other
generic point specified for the sake of output in the user
interface. In the present example, the generic point from which
the mass matrix is specified is the point of coordinates (15, -25,
-7). The first argument in the TdynTcl_Add_Mass_Matrix
procedure indicates that the specified mass matrix concerns
body number 1.

proc TdynTcl_InitiateProblem { } {

TdynTcl_Add_Mass_Matrix 1 [list 15 -25 -7] [list \
1607.95 0 0 0 11255.65 -40198.75 \
0 1607.95 0 -11255.65 0 -24119.25 \
0 0 1607.95 40198.75 24119.25 0 \
0 -11255.65 40198.75 1085366 602981 168835 \
11255.65 0 24119.25 602981 442186.3 -281391.3 \
-40198.75 -24119.25 0 168835 -281391.3 1368365]
TdynTcl_Message "TdynTcl_InitiateProblem finished!!!" notice

}

3.18. Appendix C: RAO analysis

When carrying out RAO analysis using the white noise spectrum,
it must be taken into account that the SeaFEM RAO's calculation
is based on a discrete Fourier transform decomposition.
Because of this, the total calculation time and the sampling time
are automatically calculated and fixed internally by the solver
based on the maximum and the minimum frequencies (periods)
specified by the user in the graphic user interface. Hence, even
if a "Simulation time" and/or a "Time step" are specified by the
user, they will be ignored and fixed internally by SeaFEM. Only
the "Initialization time" parameter will maintained since it can
be useful to avoid energetic transient. This is because a sudden
initialization (which can occur when no initialization time is
specified) might lead to large accumulation of energy by the
body, which would require longer simulation to dissipate all
that unrealistic body energy.

3.19. Appendix D: Multi-body analysis

SeaFEM can perform analysis of multi-body configurations. In
newer versions of SeaFEM, all bodies can be defined through
the graphic user interface. To this aim, as many body data
conditions as needed can be defined and assigned to the
corresponding geometric entities. In the figure below for
instance, two independent body data conditions were assigned
to body1 and body2 groups that correspond to the 2 cylinders
shown.

Compass - http://www.compassis.com
41

SeaFEM reference manual

Hence, each group has assigned its own body properties,
degrees of freedom, external loads and initial positions and
velocities. Nevertheless, if any property within the condition is
specified using a function, the variables used still require the
body index to be indicated between parenthesis. For example, if
body mass is defined using a function of the form M =
vol*density the actual body to which the variable vol applies
must be indicated between parenthesis. Hence, the mass of the
first body would actually read M = vol(1)*density and so on. Keep
in mind that body indices are assigned in the same order the
bodies are defined in the data tree.

The results (movements, forces, etc.) of all bodies, are saved in
the model folder, in the files
'$model_name$.BodyKinematics.res' and
'$model_name$.BodyLoads.res'. Furthermore, they can be
visualised in the 'SeaFem graphs' option of the Postprocess
menu.

Body links

Within SeaFEM, it is also possible to define links between
different bodies. This can be done in two ways. First, action-
reaction forces exherted between to given bodies can be
introduced as external loads acting on the corresponding
bodies. These functions use the standard syntax shown in
section Appendix A: function editor, but it is extended for multi-
bodies analysis, by adding the index of the body between
parenthesis at the end of the function. The following are some
examples of this extension:

mass(2): mass of the body of index 2.

dx[1.0,1.0,1.0](1): displacement of the point 1.0,1.0,1.0 of
the body of index 1.

yg(3): Y coordinate of the center of graity of the body of
index 3.

Secondlly, links can also be created that correlate degrees of
freedom from different bodies. This is internally implemented
by using a Lagrange's multipliers approach. This essentially
consists on adding a matrix of restrictions to the bodies
dynamics system, each row of that matrix corresponding to the
equation defining a link. At the user's level, it is necessary to
define these kind of links by using a tcl script procedure. In
particular, a Tcl procedure named TdynTcl_CreateBodyLinks must
be reimplemented by the user in the tcl script. Within these
procedure, several types of joints between bodies (each
implying different number of body links) can be defined
following the sintax detailed below. In addition, body links can
be optionally updated at each iteration to take into account
large displacements and rotations. To this aim, a Tcl procedure
named TdynTcl_StartNewIteration must be reimplemented by the
user in the tcl script. The sintax of the tcl functions used to
update the joints (links) is identical to their creation counterpart

just adding a first argument to identify the constraint equation
index to be updated.

The type of body joints currently available within SeaFEM is
listed bellow:

Rotation constraint
Line constraint
Plane constraint
Rotation link
Translation link
Rigid body joint
Ball joint
Revolute joint
Cylindrical joint
Prismatic joint
Translational joint

Next, the above body constraints and mechanical joints are
described in detail alongside with the arguments required to
define each one of the body link relations.

Rotation constraint

This type of constraint is used to prevent body rotation around
an arbitrary given direction.

create_rotation_constraint #body #a #b #c

update_rotation_constraint #ilink #body #a #b #c

Argument #body1 must be an integer value (greater than 0) and
is used to identify the body affected by the rotation constraint.
Such an index must respond to the order of creation of the
bodies in the interface. Arguments #a #b #c are the direction
cosines

of the axis about which the rotation of the body is prevented.

Line constraint

This type of constraint is used to enforce body movement along
a given direction (the body is allowed to move only

along a given direccion.

create_line_constraint #body #a #b #c

update_line_constraint #ilink #body #a #b #c

Argument #body1 must be an integer value (greatter than 0)
and is used to identify the body affected by the line constraint.
Such an index must respond to the order of creation of the
bodies in the interface. Arguments #a #b #c are the direction
cosines

of the direction along which the body can move.

Plane constraint

This type of constraint is used to enforce body movement over a
given plane. The body is allowed to move only over a plane
whose normal is given and going through the initial position of
the body's reference point.

create_plane_constraint #body #a #b #c

update_plane_constraint #ilink #a #b #c

Argument #body1 must be an integer (greater than 0) and is
used to identify the body to which the plane constraint applies.

Compass - http://www.compassis.com
42

SeaFEM reference manual

This body index must be consistent with the order of creation of
the bodies in the user interface. Arguments #a #b #c are the
direction cosines of the plane's normal direction.

Rotation link

This type of joint is used to enforce the rotation degree of
freedom of two different bodies to be the same.

create_rotation_link #body1 #body2 #rotdof

update_rotation_link #ilink #body1 #body2 #rotdof

Arguments #body1 and #body2 must be integer values greater
than 0 and are used to identify the two bodies being joined by
the rotation link. These indexes correspond to the order of
creation of the bodies in the interface. Argument #rotdof must
be an integer value between 1 and 3 and is used to identify the
constrained rotational degree of freedom (1 = Roll, 2 = Pitch, 3 =
Yaw). Argument #ilink identifies the constraint equation index
to be updated. It usually corresponds to an integer variable
previously initialized by the return value of the create_link
function.

Translation link

This type of link is used to create a constraint between
translational degrees of freedom of 2 bodies.

create_translation_link #body1 #body2 #transdof

update_translation_link #ilink #body1 #body2 #transdof

Arguments #body1 and #body2 must be integer values (greater
than 0) and are used to identify the two linked bodies. These
indexes correspond to the order of creation the different bodies
in the interface. Argument #transdof must be an integer value
between 1 and 3 and is used to identify the constrained
translational degree of freedom (1 = Surge, 2 = Sway, 3 =
Heave). Argument #ilink identifies the constraint equation index
to be updated. It usually corresponds to an integer variable
previously initialized by the return value of the create_link
function.

Rigid body joint

This type of joint can be used to enforce two different bodies to
move as a single rigid body. The advantage of modelling the
rigid body as two separate components instead of a unique
body, is that forces and moments exherted by one component
over the other are then accessible in the form of body joint
reactions.

create_rigid_body_full_link #body1 #body2

update_rigid_body_full_link #ilink #body1 #body2

Arguments #body1 and #body2 must be integer values greater
than 0 and are used to identify the two components of the rigid
body set. These indices must correspond to the order the
bodies were created in the user interface. Argument #ilink
identifies the constraint equation index to be updated. It usually
corresponds to an integer variable previously initialized by the
return value of the create_link function.

Ball joint

This type of link is used to create a ball joint constraint between
2 bodies. This means that the two bodies being joined share a
common point (usually the ball joint position point) about which
both bodies can rotate freely.

create_ball_joint_link #body1 #body2 #x #y #z

update_ball_joint_link #ilink #body1 #body2 #x #y #z

Arguments #body1 and #body2 must be integer values greater
than 0 and are used to identify the two linked bodies. These
indexes correspond to the order of creation of the different
bodies in the interface. Arguments #x, #y and #z must be real
values that define the initial global position of the ball joint.
Argument #ilink identifies the constraint equation index to be
updated. It usually corresponds to an integer variable
previously initialized by the return value of the create_link
function.

Revolute joint

This type of joint is used to create a revolute constraint between
2 bodies. This type of junction implies that the two bodies can
freely rotate about a common axis (actually the bodies share
two points aligned on a given axis), while the remaining degrees
of freedom (translation and rotation) are linked.

create_revolute_joint_link #body1 #body2 #x1 #y1 #z1 #x2 #y2 #z2

update_revolute_joint_link #ilink #body1 #body2 #x1 #y1 #z1 #x2
#y2 #z2

Arguments #body1 and #body2 must be integer values greater
than 0 and are used to identify the two bodies joined through
the revolute joint. These indexes correspond to the order of
creation of the different bodies in the interface. Arguments #x1,
#y1, #z1 and #x2, #y2, #z2 must be real values defining the two
points shared by the bodies. Actually these points define the
common axis of revolution.

Cylindrical joint

This type of link is used to create a cylindrical joint between 2
bodies. A cylindrical joint implies that the two bodies can
undergo relative translation along a given axis and relative
rotation about the same axis. All the remaining degrees of
freedom are linked.

create_cylindrical_joint_link #body1 #body2 #a #b #c

update_cylindrical_joint_link #ilink #body1 #body2 #a #b #c

Arguments #body1 and #body2 must be integer values greater
than 0 and are used to identify the two bodies linked by the
cylindrical joint. These indexes correspond to the order of
creation of the different bodies in the interface. Arguments #a
#b and #c must be real values that define the vector/axis that
characterizes the cylindrical joint. Argument #ilink identifies the
constraint equation index to be updated. It usually corresponds
to an integer variable previously initialized by the return value
of the create_link function.

Prismatic joint (deprecated)

This type of link is used to create a prismatic joint constraint
between 2 bodies. A prismatic joint means that all rotational
degrees of freedom are linked (this is, both bodies undergo
identical roll, pitch and yaw rotations) and that both bodies can
undergo relative translation only along a given axis. Such an
axis is limited to be alligned along one of the global coordinate
system axes (i.e. X, Y, or Z global axes). This type of link is
deprecated and superseeded by the Translational joint
described below. Nevertheless, Prismatic joint are still available
to ensure backward compatibility.

create_prismatic_joint_link #body1 #body2 #axis

update_prismatic_joint_link #ilink #body1 #body2 #axis

Arguments #body1 and #body2 must be integer values greater

Compass - http://www.compassis.com
43

SeaFEM reference manual

than 0 and are used to identify the two joined bodies. These
indexes correspond to the order of creation the different bodies
in the interface. Argument #axis must be an integer value
greater than 1 that determines the axis along which the two
bodies can undergo relative displacement. Argument #ilink
identifies the constraint equation index to be updated. It usually
corresponds to an integer variable previously initialized by the
return value of the create_link function.

Translational joint

This type of link generalizes the prismatic joint. It is used to
create a prismatic joint constraint between 2 bodies so that all
rotational degrees of freedom are linked (this is, both bodies
undergo identical roll, pitch and yaw rotations) while both
bodies can undergo relative translation along a given generic
axis.

create_prismatic_joint_link #body1 #body2 #a #b #c

update_prismatic_joint_link #ilink #body1 #body2 #a #b #c

Arguments #body1 and #body2 must be integer values greater
than 0 and are used to identify the two joined bodies. These
indexes correspond to the order of creation the different bodies
in the interface. Arguments #a #b #c must be real values that
define the vector/axis that characterizes the translational joint.
Argument #ilink identifies the constraint equation index to be
updated. It usually corresponds to an integer variable
previously initialized by the return value of the create_link
function.

An example of tcl script procedure reads as follows:

proc TdynTcl_CreateBodyLinks { } {

 global link1 link2

 set link1 [create_ball_joint_link 1 2 0.0 0.0 -1.0]

 set link2 [create_rotation_link 1 2 0]

}

proc TdynTcl_StartNewIteration { } {

 global link1 link2

 update_ball_joint_link $link1 1 2 0.0 0.0 -1.0

 update_rotation_link $link2 1 2 0

}

In this example, first a ball joint link is created between bodies 1
and 2 (the corresponding equation index is stored in the global
variable link1). The ball joint is located at the position given by
the initial global coordinates 0.0, 0.0, -1.0. Secondly, an
additional constraint between bodies 1 and 2 is created so that
both bodies rigidly rotate in roll direction (link 2).

Generic links can also be created that correlate any number of
degrees of freedom from different bodies. The implementation
of this kind of links essentially consists on calling the
TdynTcl_Create_Body_Link function through the Tcl script. The
arguments passed to this function are triads of values that
consecutively define the various coefficients of the particular
link equation. To this aim, each triad consists on an integer
identifying the body, another integer identifying the degree of
freedom and a real value setting the corresponding coefficient
value. An additional argument can be provided at the end to
specify an optional independent coefficient that could exist for a
given link equation. An example of tcl script procedure for this

kind of generic link would read as follows:

proc TdynTcl_CreateBodyLinks { } {

x_1 - x_2 + (zg2 - zg1)*ry_2 = 0
TdynTcl_Create_Body_Link 1 1 1.0 2 1 -1.0 2 5 2.0 0.0

}

In this example, a link is provided between the surge degree of
freedom of body 1 and the surge degree of freedom of body 2.
In this equation, coefficients concerning x_1 and x_2 are 1.0 and
-1.0 respectively, while the coefficient concerning ry_2 is the z-
distance between the gravity center of the two bodies (zg2 - zg1)
being equal to 2.0. No independent term exists for this link.

It is also possible to define links between bodies using the
different mooring options of SeaFEM. See Appendix E: Mooring
definition by Tcl section for further information.

3.20. Appendix E: Mooring definition by Tcl

Mooring definition in SeaFEM can be done by using the GUI
options available (see Mooring data section for further
information). However, mooring systems can also be defined
through a Tcl script procedure, that gives access to advanced
mooring definition options. The Tcl procedure must be
implemented in a text file. Such a file, is further provided as an
input argument of the Tcl data section of the data tree, once the
option to use an external Tcl script is activated.

Tcl data section of the SeaFEM data tree

Tcl data can be accessed and modified at any time through the
menu option:

General data ► Tcl data

The procedure to be implemented in the tcl script is named
TdynTcl_CreateMooringLine and simply consists on the
definition of all mooring segments and further definition of the
segment links. Segments definition is performed by calling the
SeaFEM internal function create_mooring_segment. Arguments
passed to this function are described below. Links between

Compass - http://www.compassis.com
44

SeaFEM reference manual

segments are specified by calling the SeaFEM internal function
create_mooring_link. Arguments passed to this function are
also described below.

The syntax to call TdynTcl_Create_Mooring_Segment and the
arguments passed to the function are as follows:

syntax : TdynTcl_Create_Mooring_Segment $body $type $xi $yi
$zi $xe $ye $ze $w $L $A $E [$S $N $d1 $d2]

alternative syntax: create_mooring_segment $body $type $xi $yi
$zi $xe $ye $ze $w $L $A $E [$S $N $d1 $d2]

The arguments between brackets only apply to certain types of
mooring segments.

body : index of the body which the mooring is linked to
(from 1 to n). If no body is specified, the current mooring
segment is assumed to be attached to the main body

type : this parameter determines the type of mooring
segment to be used. The possible values of this parameter
are:
type = 4 - catenary

type = 1 - spring

type = 3 - spring only traction

type = 6 - dynamic cable

xi [m] : x coordinate of the initial point of the mooring
segment (this must be the point closer to the body)

yi [m] : y coordinate of the initial point of the mooring
segment (this must be the point closer to the body)

zi [m] : z coordinate of the initial point of the mooring
segment (this must be the point closer to the body)

xe [m] : x coordinate of the end point of the mooring
segment

ye [m] : y coordinate of the end point of the mooring
segment

ze [m] : z coordinate of the end point of the mooring
segment

w [N/m] : effective weight (actual weight minus bouyancy)
per unit length

L [m] : length of the segment

A [m2] : cross section area of the cable
E [Pa] : Young modulus

S : this is the seabed parameter. This argument has only
effect for catenary segments and dynamic cables. If it is
provided for other mooring types, it will be actually
ignored.

 S = 0 - No seabed contact. The segment has at both ends a
'Connection point', or a 'Connection point' and a 'Fairlead
point'.

 S = 1,..,7 - the segment has an 'Anchor point'. The possible
values of this parameter 'S' are as follows:

 S = 1 - Frictionless seabed (no seabed friction)

 S = 2 - Chain with sandy seabed (chain + sandy
seabed contact exist)

 S = 3 - Chain with mud/sand seabed (chain +
mud/sand seabed contact exist)

 S = 4 - Chain with mud/clay seabed (chain +
mud/clay seabed contact exist)

 S = 5 - Wire rope with sandy seabed (wire rope +
sandy seabed contact exist)

 S = 6 - Wire rope with mud/sand seabed (wire rope
+ mud/sand seabed contact exist)

 S = 7 - Wire rope with mud/clay seabed (wire rope
+ mud/clay seabed contact exist)

N : This argument only applies in the case of dynamic
cables (type 6). It indicates the number of line elements for
cable geometric discretization.

d1, d2 : User defined damping ratios.

For each segment, initial and end points must be introduced in
a specific order, being the initial point the closest one to the
body. The function simply returns an identifier for the created
segment, that can be used to define links among the different
mooring segments. These links are defined using the function
create_mooring_link, as defined in the following.

By default, create_mooring_segment assumes that the initial
point is linked to the given body, and the end point is fixed at
the seabed. However, this assumption can be overwritten by
defining links with other mooring segments or bodies. As
commented above, the function create_mooring_link can be
used to define links among the different segments of a multi-
segment mooring line. This function can create different type of
links as explained below.

The syntax to call create_mooring_link and the arguments
passed to the function are as follows:

syntax : create_mooring_link $seg1 $seg2 $f

alternative syntax: TdynTcl_Create_Mooring_Link $seg1 $seg2 $f

seg1 : identifier variable corresponding to the first segment
of the link (this must be the segment closer to the body)

seg2 : identifier variable corresponding to the second
segment of the link

f [N] : buoyancy force to be applied at the link node

The operator TdynTcl_Create_Mooring_Link can also be used
to define links between three lines (joint to the same node). In
that case, the syntax of the function is as follows:

syntax : TdynTcl_Create_Mooring_Link $seg1 $seg2 $seg3 $f

alternative syntax: create_mooring_link $seg1 $seg2 $seg3 $f

seg1 : identifier variable corresponding to the first segment
of the link (the segment closer to the body)

seg2 : identifier variable corresponding to the second
segment of the link

seg3 : identifier variable corresponding to the third
segment of the link

f [N] : buoyancy force to be applied at the link node

The function TdynTcl_Create_Mooring_Link can also be used to
define links between two bodies. In that case, the syntax of the
function is as follows:

syntax : TdynTcl_Create_Mooring_Link $seg1 &body

alternative syntax: create_mooring_link $seg1 &body

seg1 : identifier variable corresponding to the segment of
the link

Compass - http://www.compassis.com
45

SeaFEM reference manual

body : index of the body which the mooring is linked to
(from 1 to n).

An example of a TCL script for defining a multi-catenary
mooring system is shown below. It corresponds to the mooring
system configuration sketched in the following figure:

proc TdynTcl_CreateMooring { } {

 set type 3

 set area 1.13E-006

 set w 0.076

 set E 2.10E+011

 # segments

 set segA [create_mooring_segment $type -3.58 0.00 -2.07 -4.49
0.0 -4.78 $w 2.9370 $area $E 0]

 set segB [create_mooring_segment $type -1.28 0.00 -1.89 -3.58
0.0 -2.07 $w 2.5590 $area $E 0]

 set segC [create_mooring_segment $type -0.17 0.00 -0.64 -1.28
0.0 -1.89 $w 1.7620 $area $E 0]

 set segD [create_mooring_segment $type -0.32 0.00 -2.99 -1.28
0.0 -1.89 $w 1.5590 $area $E 0]

 # links

 create_mooring_link $segB $segA 230.0

 create_mooring_link $segC $segB $segD 0.0

}

The function TdynTcl_Set_Mooring_Displacement can be used
to define the displacement of the end point of a mooring
segment.

syntax : TdynTcl_Set_Mooring_Displacement $seg1 $fun1 $fun2
$fun3

alternative syntax: set_mooring_displacement $seg1 $fun1
$fun2 $fun3

seg1 : identifier variable corresponding to the segment

fun1 : index of the function describing the time-dependent
displacement in OX of the end point of the mooring
segment

fun2 : index of the function describing the time-dependent
displacement in OY of the end point of the mooring
segment

fun3 : index of the function describing the time-dependent
displacement in OZ of the end point of the mooring
segment

The function TdynTcl_Configure_Mooring_Segment can be
used to configure advanced options of the cable segments.

syntax : TdynTcl_Configure_Mooring_Segment $seg1 $Gk $Gc
$Gu $Ms $Md $Cd $Cf $Cm $alpha $bci

alternative syntax: configure_moorin_segment $seg1 $Gk $Gc
$Gu $Ms $Md $Cd $Cf $Cm $alpha $bci

seg1 : identifier variable corresponding to the segment

Gk : ground normal stiffness per unit length (Pa/m) for
seabed interaction
Gc : ratio of critical damping of ground (-) for seabed
interaction
Gu : horizontal damping coefficient (-) for seabed
interaction
Ms : static horizontal friction coefficient (-) for seabed
interaction
Md : dynamic horizontal friction coefficient (-) for seabed
interaction
Cd : tangential drag coeficient of the cable

Cf : normal drag coeficient of the cable

Cm : added mass coefficient of the cable
alpha : Alpha coefficient of the Bossak-Newmark
integration scheme

bci : boundary condition for the initial node: 1 if
acceleration is imposed, -1 if the node is fixed, 0 if it is free

3.20.1. Visualization of mooring results

When running a SeaFEM analysis that includes mooring lines
defintion, specific result files are generated concerning the
mooring system:

 MooringLoads.res - It contains the forces and moments
exherted by the mooring system on the attached body.

 MooringResults.msh - It contains an authomatically
generated mesh of the mooring system.

 MooringResults.res - It contains the displacement results of
each mooring segment.

 projectName.MooringData.res - It contains the tension
force components at both ends of each mooring segment.

If MooringResults.msh and MooringResults.res files exist, they
are authomatically loaded into the postprocessor graphic user
interface. All mooring segments appear grouped within a single
Mesh group called "Mooring". Visualization options of each
mooring segment can be manipulated individually as can be
done with any other mesh. Mooring displacement results can
also be animated by drawing the corresponding deformed
result as shown in the figure below. To this aim, follow the steps
listed in what follows:

5. - In the meshes window, check all mooring segments that
you want to be plotted.

6. - Select the "Mooring > Displacement > Contour fill" option
in the results window.

7. - Choose the "Deformed > Result > Mooring
{Displacement}" option in the preferences window.

8. - Finally, activate the "Deformed > Draw" option in the
preferences window.

Compass - http://www.compassis.com
46

SeaFEM reference manual

3.21. Appendix F: Morison's forces effect

When viscous effects may be advanced to have a significant
effect on the dynamic behavior of an offshore structure,
Morison's equation can be used to correct the forces evaluated
by the difraction-radiation solver. For this purpose, an auxiliary
framework structure, associated to a body must be defined.
Based on the information provided by the user, SeaFEM
evaluates Morison's forces per unit length acting on this
framework structure. After integration along the different
elements, the resultant forces are incorporated to the dynamic
solver of the rigid body to which the idealized framework
structure has been associated.

To this aim, a tcl procedure must be used to define the different
elements of the framework structure associated to a body. This
procedure allows specifying the reference line of the element as
well as the added mass, lift, drag and friction coefficients of the
Morison's equation. This function can be called several times to
define as many elements as required.

The syntax to define the Tcl procedure to create new elements
of the framework structure read as follows:

TdynTcl_Add_Morison_Element b t x1 y1 z1 x2 y2 z2 D S CM CD CV CF
CL

where:

b is and integer index that identifies the body to which the
Morison element pertains,

t is the element type (0 defines a standard element for
which the floatability forces are evaluated, and 1 defines a
virtual element for which floatability forces are neglected).

x1, y1, z1, x2, y2, z2 are the coordinates of the end points of
the cylinder,

D is the section characteristic linear dimension (the
diameter in the case of a cylinder),

S is the cross section area,
CM is the added mass correction coefficient,

CD is the non-linear drag coefficient,

CV is the linear drag coefficient,

CF is the friction coefficient,

and CL is the lift coefficient.

TdynTcl_Add_Morison_Element procedure returns the index of the
created element of the framework structure.

Based on the information provided in the succesive calls to
TdynTcl_Add_Morison_Element command, SeaFEM evaluates
Morison's forces per unit length acting on the framework
structure defined by the suer. After integration, the resultant
forces are incorporated to the dynamics of the rigid body to
which the framework structure has been associated. The
various (per unit length) contributions to the force are
calculated as follows:

FM= (1-δv)(1+CM)·ρ·S·(lxawxl)-ρ·S·CM(lxabxl)

FD= 0.5·CD·ρ·D|lxvxl|(lxvxl)

FV= 0.5·CV·ρ·D·(lxvxl)

FF= 0.5·CF·ρ·π·D|l·v|(l·v)·l

FL= 0.5·CL·ρ·D|lxv|(lxv)

where l is the unit vector locally oriented along the element, aw
is the fluid acceleration of the incident wave, abis the
acceleration vector of any point of the body, v is the relative
velocity vector, and FM, FD, FV, FF and FL are the inertial correction,
drag, linear drag, friction and lift components of the force per
unit length respectively.

Remark: the first term in the right hand side of the FM equation
includes the Froude-Kriloff force (i.e. the undisturbed wave
pressure force) and the diffraction inertial force, while the
second term represents the radiation inertial force.

It is important to keep in mind that the added mass
contribution calculated using the Morison's equation will be
added to the added mass effect that is already accounted for by
the diffraction-radiation SeaFEM solver. Hence, the added mass
contribution of the Morison's equation must be only used if, for
some reason, the user wishes to correct the added mass effect
calculated by SeaFEM.

It is emphasized that SeaFEM will always calculate the inertia
term by integrating the pressure field on the body surface. This
will result in the evaluation of the Froude-Krylov force plus
diffraction force. On the other hand, it is well known that
viscous effects can reduce the amplitude of the diffraction force,
and in most of the cases SeaFEM calculation will result in
overprediction of this value. Hence, the added mass
contribution of the Morison's equation can be used to improve
the computational prediction of this force, by setting a suitable
(usually negative) value of CM, based on experimental
information.

As an example, the following code can be used to add to body
number 1 the Morison forces acting on a cylinder whose axis is
oriented in the vertical z-direction. In this simplified example,
only added mass and non-linear drag effects are considered,
while linear drag, friction and lift corrections are kept null.

proc TdynTcl_StartSetProblem {} {

 set idx [TdynTcl_Add_Morison_Element 1 0 0.0 0.0 0.0 0.0 0.0 -0.5 1
0.7854 -0.3 1.4 0.0 0.0 0.0]

}

Finally, it is possible to update the values of the different
coefficients of an element of the auxiliary framework structure.
The syntax of the Tcl procedure that can be used for this
purpose read as follows:

TdynTcl_Update_Morison_Element idx CM CD CV CF CL

where:

Compass - http://www.compassis.com
47

SeaFEM reference manual

idx index of the previously created element of the
framework structure (returned by
TdynTcl_Add_Morison_Element),

CM is the updated added mass correction coefficient,

CD is the updated non-linear drag coefficient,

CV is the updated linear drag coefficient,

CF is the updated friction coefficient,

and CL is the updated lift coefficient.

As an example, the following code can be used to nullify the
Morison's correction of the framework element of index 1, after
1.0 s of simulation.

As an example, the following code can be used to nullify the
Morison's correction of the framework element of index 1, after
1.0 s of simulation.

proc TdynTcl_StartNewStep {} {

 if {[TdynTcl_Time]>1.0} {

TdynTcl_UpdateAdd_Morison_Element 1
0.0 0.0 0.0 0.0 0.0

}

}

As stated above, the forces evaluated on the auxiliary
framework structure are added to the dynamic solver of the
different associated bodies. Furthermore, these forces are
outputed to the ASCII file 'MorisonLoads.res'. This file constains
24·n columns, where n is the number of bodies in the analysis.
For every body, the following 24 values are written every time
step:

Mx: X component of the added mass force acting on the
center of gravity of the body.

My: Y component of the added mass force acting on the
center of gravity of the body.

Mz: Z component of the added mass force acting on the
center of gravity of the body.

MMx: X component of the added mass moment acting on
the center of gravity of the body.

MMy: Y component of the added mass moment acting on
the center of gravity of the body.

MMz: Z component of the added mass moment acting on
the center of gravity of the body.

Dx: X component of the total drag force acting on the
center of gravity of the body.

Dy: Y component of the total drag force acting on the
center of gravity of the body.

Dz: Z component of the total drag force acting on the
center of gravity of the body.

DMx: X component of the total drag moment acting on the
center of gravity of the body.

DMy: Y component of the total drag moment acting on the
center of gravity of the body.

DMz: Z component of the total drag moment acting on the
center of gravity of the body.

Fx: X component of the friction force acting on the center of
gravity of the body.

Fy: Y component of the friction force acting on the center of
gravity of the body.

Fz: Z component of the friction force acting on the center of
gravity of the body.

FMx: X component of the friction moment acting on the
center of gravity of the body.

FMy: Y component of the friction moment acting on the
center of gravity of the body.

FMz: Z component of the friction moment acting on the
center of gravity of the body.

Lx: X component of the lift force acting on the center of
gravity of the body.

Ly: Y component of the lift force acting on the center of
gravity of the body.

Lz: Z component of the lift force acting on the center of
gravity of the body.

LMx: X component of the lift moment acting on the center
of gravity of the body.

LMy: Y component of the lift moment acting on the center
of gravity of the body.

LMz: Z component of the lift moment acting on the center
of gravity of the body.

3.22. Appendix G: Analysis advanced
configuration

Several advanced (or rarely used) options of the analysis can be
configured through the Tcl extension of SeaFEM. As usual, the
necessary tcl script procedure must be implementd in a text file,
which is further provided as an input argument in the Tcl data
section of the data tree once the option to use an external Tcl
script is activated.

General data ► Tcl data

The specification of advanced options is performed by
reimplementing the TdynTcl_InitiateProblem procedure, and
simply consists on calling the SeaFEM internal function
configure_analysis with two arguments indicating the advanced
option's name and the corresponding value. Available
configuration options are described in the following list:

Mooring_Elements_Number: sets the number of elements
for the output of dynamic mooring results. The second
argument must be a positive integer number.

Mooring_Initial_Damping: activates or deactivates the initial
damping for dynamic mooring. The second argument must
be 0 (deactivated) or 1 (activated).
Mooring_Solver_Type: sets the type of nonlinear solver for
dynamic mooring lines. The remaining arguments must be
a couple of real values.

Morison_Elements_Number: sets the number of elements
for the output of Morison element results. The second
argument must be a positive integer number.

Relax_Type: switchs on and off the Aitkens relaxation
method for wave-structure coupling analysis. The second
argument must be 0 (deactivated) or 1 (activated).

Solve_Dif_Rad: switchs on and off the diffraction-radiation
solver. The second argument must be 0 (switch off) or 1
(switch on).
Moving_frame: updates the cordinates reference frame

Compass - http://www.compassis.com
48

SeaFEM reference manual

according to the main body horizontal displacement. The
second argument must be 0 (deactivated) or 1 (activated).

Example: the following Tcl script can be used to deactivate the
solution of the diffraction-radiation problem (so that only
incident waves are taken into account) and to update the
coordinates reference frame in accordance to the horizontal
displacement og the main body.

proc TdynTcl_InitiateProblem { } {

 configure_analysis Solve_Dif_Rad 0

 configure_analysis Moving_frame 1

}

