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1. Introduction

RamSeries is a numerical simulation solver for structural analysis, based on the finite
element method (FEM). It offers a large set of numerical capabilities that can be used for the
analysis of a wide range of structural problems, from linear statics to linear and non-linear
transient simulations and modal analysis. It can be used as well to simulate impact, coupled
fluid-structure analysis, thermomechanical problems, fatigue assessment of structures and
much more. RamSeries includes a full range of 3D structural element models, including
beams, cables, shells, membranes and solid elements. It also considers both linear and non-
linear material's constitutive laws including advanced models for laminated composite
structures.

This document is intended to provide a brief introduction to some of the basic theoretical
aspects underlying the RamSeries solver. To this aim, the fundamentals of structural
analysis are presented first together with the basic material constitutive models available in
RamSeries. Next, fundamental aspects of the dynamic analysis and the non-linear analysis
are also underlined.

2. Structural analysis and material's constitutive models

In this chapter, the fundamental theoretical aspects of the structural analysis of three-
dimensional solids and shells are presented in sections 2.1 and 2.2 respectively. Within this
context, linear isotropic and orthotropic material constitutive models are described. Next,
the classic lamination theory implemented in RamSeries is described in section 2.3. The
more advanced serial-parallel theory, suitable for the analysis of generalized composite
materials, is described in section 2.4. Finally, to close the chapter, the J2-flow and the
isotropic damage non-linear constitutive models are presented in sections 2.6 and 2.7.

2.1.  Analysis of three-dimensional solids

In this section, a summary of the theory of 3D solids analysis is provided. The basic
assumptions under the formulation implemented within RamSeries are as follows:

1. Small displacements
2. Linear elasticity of materials

3. The principle of loads superposition

For a 3D solid, the displacement of a given point is completely determined by the values of
the three degrees of freedom u, v, w.
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Figure 2-1. Schematic representation of a 3D solid. The deformation of the solid is completely
determined once the displacement field (u, v,w) is known. Hence, three degrees of freedom must be
considered for each material point.

Following the three-dimensional theory of elasticity, the deformation of the solid is defined,
using the Voigt notation, as follows:
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In the most general case of anisotropic elasticity, the stress-strain relation is provided
through a symmetric 6x6 constitutive matrix with 21 independent coefficients. Nevertheless,
the more simple and commonly used orthotropic case is considered in RamSeries. Hence,
considering x',y’,z' the principal orthotropic directions of the solid material, the
constitutive equation in local axes can be written as:
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where only 9 independent material constants actually remain since the following relations
must hold due to the symmetry of the constitutive matrix:

Exlvylxl = Eylvxlyl ’ Eylvz’y’ = Ezlvylzl ’ Ezlvx’z’ = ExIVZIxI Eq 2-3

In the isotropic case only two material parameters, the Young's modulus E and the Poisson
coefficient v, are required and the constitutive relationreduces to:

_ O'x - — Ex —_
Oy €y
O-Z GZ
=D Eq. 2-4
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where the stiffness matrix D is given by:

E(1-v)
T a+wa-2n
] v v .
1 T 1-v 0 0 0
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1 ey 0 0 0
e 0 0 Eq. 2-5
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1-2v
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2.2.  Analysis of shells

Glossary
Symbol Description SI units
x'y', 7z Local shell coordinate directions
L Displacements of a generic point in the local coordinate system
u,v,w
of the shell
y Displacements of a mid-plane point of the shell in the local
Uy, Uy, Wy . m
coordinate system of the shell
01, 6y, Rotations in the local coordinate system of the shell rad
€x) €y In-plane shell axial strains -
Varyr In-plane shell shear strain -
Yarzn Yyrzr Transverse shell shear strains -
Ty, Oy; In-plane shell axial stresses Pa
Toryr In-plane shell shear stress Pa
Txrzo Tyizr Transverse shell shear stresses Pa
D' Flexural constitutive matrix Pa
D/’ Shear constitutive matrix Pa
a Shear correction factor -
Eyi, Ey, Young modulus in the principal in-plane directions of the shell Pa
Gxryrr Gyrxr Shell's in-plane shear modulus Pa
Vyryn Vyrxr Shell's in-plane Poisson coefficients -
N; Normal forces per unit length (membrane forces) N/m
N;; Horizontal shear forces per unit length (membrane forces) N/m
M; Bending moments per unit length N
V; Shear forces per unit length N/m
ij Twisting moment per unit length N
[ Generalized local membrane stresses of the shell N/m
6} Generalized local flexural stresses of the shell N
o Shear generalized local stresses of the shell N/m

The analysis of shells is based on approximating a real solid by its corresponding medium
plane, assuming one of its dimensions is much smaller than the other two. Several
additional assumptions and simplifications are also necessary to close the model. In
particular, the Reissner-Mindlin hypothesis is adopted in RamSeries for the implementation
of a structural model for shells. These hypothesis can be summarized as follows:

Small displacements

Linear elasticity of materials

Principle of loads superposition

Accounting for shear deformations

All the points belonging to a given normal to the medium plane have the same
vertical displacement (in the z' local shell's direction)

A WwN =
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6. All points that, before the deformation, belonged to a given normal to the medium
plane, after deformation continue belonging to a straight line, no longer necessarily
orthogonal to the deformed medium plane

7. Normal stress o,is neglected

Only assumptions 5, 6 and 7 are specific to the Reissner-Mindlin hypothesis. The remaining
ones apply to both, the Reissner-Mindlin and the Kirchhoff shell models.

From the assumptions above it is possible to deduce the following expression for the shell’s
deformation [1]:
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where u, v}, w,, 0y, 6y, are the five degrees of freedom to be considered for each node of

the shell. The ' symbol that appears in all the degrees of freedom and coordinates that take

part in the definition of the strain tensor in Eq. 2-6, indicates that they are referred to the
local coordinates system of the shell.

The shell's constitutive equation is given by:

Ox €Ex |
o, €,
y Df’ 0 y
Byt | L. eSS Eq. 2-7
0 DS,
Ty'z! Vx'z'
_‘L'ylzl_ _yylzl_

where Df' and D; are the flexural and shear constitutive matrices respectively. These
constitutive matrices can be written, for an orthotropic material, as follows:

) Exi  VayEx 0
Df’ = ﬁ VylxlEyl Eyl 0 EC]. 2-8
x'y"Vy'x 0 0 (1 — Vx'y’Vy’x’)foyf
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AGyy, 0

Ds=1 0" aGyn

Eqg. 2-9

The factor a in Eq. 2-9 is the coefficient to correct for the transversal tangential work (or
shear correction factor).

In addition, due to the fact that for plates and shells the actual solid is approximated by the
shell's mid-plane, instead of solving for the 3-dimensional stress distribution through the
entire body, the problem must be actually solved for certain stress resultants. These stress
resultants are line distributions of force or moment per unit length along curves located in
the middle plane of the plate or shell. These line distributions are statically equivalent to the
distributions of stress on certain planes of the 3-dimensional body [2] (see Figure 2-2 and
Figure 2-3).

¥ .

Figure 2-2. Schematic representation of a plate or shell element of thickness h. Within the context of a
shell theory, the actual solid is approximated by its mid-plane (ABCD), and the stresses distributions
(0%, Txy, Txz) @re replaced by stress resultants along curves in the middle plane (AB for instance in the

figure).

In this sense, the shell theory replaces the distributed normal stress g, per unit area on the
positive x-face of the element by a normal force N, per unit length along AB, and a bending
moment M, per unit length along AB that can be expressed as:

h/2

N, =j o,dz Eq. 2-10
~h/2
h/2

M, =f Z0,dz Eq. 2-11
~h/2

These line distributions of force and moment are statically equivalent to the surface
distribution g,. Similarly, the distribution of vertical shear stress T, is statically equivalent
to a vertical shear force I, per unit length along AB in the form:
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h/2
V. = f Ty dz Eg. 2-12
~h/2

And finally, the horizontal shear forces resulting from the shear stress distribution 7,, are
represented by a twisting moment per unit length of the form:

h/2
M,, = —f ZTyydz Eq. 2-13
~h/2

Finally, the horizontal shear forces per unit length Ny,, and N,,, are defined as:

h/2

Nyy = Ny = J TyydZ Eq. 2-14
~h/2

Forces Ny, and I}, and bending moments M,, per unit length are defined by replacing x by y

in the equations above. Figure 2-3 summarizes the positive sign convention for the stress
resultants.
T:

Figure 2-3. Sign convention for stress resultants. (a) Positive forces. (b) Positive moments.
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The forces per unit length (Ny, N,, and Ny,) acting in the plane of the shell are called
membrane forces.

Thus, summarizing it is possible to define the strengths on the shell as follows:

_ I -
Ny r Oxr
N, Ty
A Tx'y!
o~ x'y ’
(13
|- . W] ]
!
en M , E Z O'x’ E e
I __ | &=/ _ X _ I ! ! 12
o =|a;|= My |~ ) z’ay: dz' = 705 dz Eq. 2-15
-3 =l ..
~ Z' T 0
LI’SJ Myryr xy o,
Ver Tx'z!
| Vy, ] | Tylzl i

where h is the thickness of the shell and @}, 6, and G are the membrane, flexural and

shear generalized local stresses respectively. The relation between the generalized stresses
and the generalized local deformations can be finally obtained from Eq. 2-7 and Eq. 2-15.

! ! ~l )
T ] [ D&+ 7€) [
5 e
’ 12N _ PN;
fh zaf dz' = h Df(em+z &) |dz' =D'| & | Eq. 2-16
l E _E l...J
G D’A’ (A

being D' the shell constitutive matrix.

h D} z’D} 0

—~ 2

D' = fh Z’D/” z’ZD} 0 Eq. 2-17
2l 0 0 D

2.3. Classical lamination theory

Glossary
Symbol Description Units
[T,] Laminate axis to ply axis stress transformation matrix -
T.] Laminate axis to ply axis engineering strain transformation
€ matrix
[Q;] Ply modulus matrix N/m?
N Number of plies -
k Ply number (1 to n) -
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Zy, Height to ply mid-thickness from laminate mid-thickness m
[4] Extensional stiffness matrix N/m
[B] Bending-extension coupling stiffness matrix N
(D] Bending stiffness matrix N-m
[H] Transverse shear stiffness matrix N-m
(Ny, Ny, Nyy)  Laminate in-plane (membrane) forces per unit width N/m
My, M,,M,,) Laminate bending moments per unit length N
W, V) Transverse shear forces per unit length N/m

(€2,€,7sy)  Laminate in-plane strains -
Vyz Vxz) Laminate transverse shear strains -
bxr By Rotations in the local coordinate system of the shell rad
(Kx, Ky, Kxy)  Laminate curvatures (due to bending and twisting) m’

Failure criteria

FI Failure index -

R Reserve factor (or strength ratio) -
S Tensile strength in the fibre direction of the ply N/m?
Se1 Compressive strength in the fibre direction of the ply N/m?
Se2 Tensile strength in the transverse direction of the ply N/m?
Seo Compressive strength in the transverse direction of the ply N/m?
Ty, In-plane shear strength of the ply N/m?

The Classical Lamination Theory (CLT) can be used to determine the stiffness, the strength
and the effective material properties of laminated shells, as it is explained in many
textbooks [3]. The fundamental assumptions are:

e Laminate plies are perfectly bonded together.

e The bonds are thin and displacements are continuous across boundaries.

e Displacements are small compared to the laminate thickness.

e Strains are small compared to unity.

e The application of Kirchoff hypothesis for plates. In-plane displacements are a linear
function of the thickness coordinates, which result in negligible interlaminar shear
strain.

e The laminate thickness is small compared with the lateral dimensions.

The main objective of the CLT is to determine the laminate stiffness matrix, which is central
for subsequent structural analysis. To this aim, first the constitutive behaviour of individual
plies must be determined. Next, the relationship between the structural properties of the
entire laminate and those of the individual plies and their corresponding orientations must
be addressed.

2.3.1. Mechanics of individual plies (ply mechanics)

A laminate is a set of plies with different fibre orientations bonded together. Hence, before
developing laminate properties, it is necessary to address the issue on how to transform
stresses, strains, compliances and stiffness from the ply coordinate system to the laminate
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coordinate system. Finally, the modulus matrix, thickness and height to ply mid-thickness
are used to sum the contribution of each ply to obtain the laminate stiffness matrix.

The stress transformation matrix used to transform stress from the laminate axis system to
the ply axis system is given by:

m? n? 2mn
[T;]1=| n?> m? —-2mn Eq.2-18
—mn mn m?—n?

where m = cos? 8 and n = sin? 8 and 6 determines the orientation of the ply as shown in
Figure 2-5.

On the other hand, the strain transformation matrix differs depending on whether the
formulation at hand is dealing with tensorial strain or engineering strain. The Reuters
transformation matrix can be used to cope effectively with the factors of one half and two in
the stiffness and compliance matrices that arise depending on the actual strain being used

[4].
m? n? mn

[Tl = n? m? —mn Eq. 2-19
—2mn 2mn m?—n?

The ply modulus matrix in laminate system is finally obtained as:

Q4] = [Tl Q] [Teli Eq. 2-20

2.3.2. Mechanics of the entire laminate (macromechanics)

The basic building block of a composite structure is a plate element. Even composite beams
are thin-walled sections composed of plate elements [4]. The constitutive equations for such
an element are presented here.

First, it must be noted that the sign conventions used for the definition of the laminate
stacking sequence, ply orientation, strains, curvature and applied membrane and bending
loads affect the sign of some of the terms of the laminate stiffness matrix. The convention
used in RamSeries is shown in the following figure.
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Figure 2-5. Orientation of individual ply local axes (1,2) in relation to the laminate global axes (x,y).

The basis of the first-order shear deformation theory (FSDT) of plates is given by the
following equations:

du,

ex(x,y) = Bx Eqg. 2-21
dav
€9(x,y) = a—; Eq. 2-22
du, Jv
Yy (%, ¥) = a—yo + a_xo Eq.2-23
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0y
0x

¢
Ky (,y) = O_yy

K (%,y) =

0. 39,
dy 0x

ny(x' y) =

sz(x' Y Z) = _¢y + aWO/ay

sz(x; Y, Z) = —¢x + aWO/ax

Eq. 2-24

Eq. 2-25

Eq. 2-26

Eq. 2-27

Eq. 2-28

On the other hand, the basis for the classical plate theory (CPT) is given by the following set
of equations, where transverse shear deformations (yy, and y,,,) are neglected:

du

e2(x,y) = e Eq. 2-29
ey(x,y) = %—1;0 Eq. 2-30
Yy (6, ¥) = aa—ljf + % Eq. 2-31
K (x,y) = a(;:;o Eq. 2-32
Ky (x,y) = 662;1;0 Eqg. 2-33
Koy (X, ) = 2 gi‘g; Eq. 2-34

FSDT is more accurate specially in the case of laminated composites since these materials
have low shear modulus (G<E/10) thus requiring transverse shear deformations to be taken
into account.

Up to this point, the strains at every point (x,y,z) of the plate have been replaced by the
corresponding mid-surface strains (€3, €y, ¥yy) and the surface curvatures (ky, Ky, Kxy):

€x 69(3 Ky
{Ey}= €y —z{"y} Eq. 2-35
K
Yy Vy?y xy
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Integrating the stresses over the thickness of the plate it is possible to obtain the resultant
forces and moments per unit width of laminate as:

N, n Oy
Ny } = jh Uy]dz Eq. 2-36
ny 2 LTxy
v h
x 2 'Tyz
= — d
{Vy} f_; -sz] d
M, g Oy
M, ——fh[ay] z-dz
Mxy 2 LTxy

Note that with this definition, the moment is positive when the stress is compressive above
the mid-surface and tensile below it. Also, positive curvature results in a deflection w(x,y)
that is concave up, as it happens in a simply supported beam under its own weight.

For a laminate, the above defined integrals span over several plies. Therefore, the integrals
can be divided into summations of integrals over each lamina.

The laminate stiffness matrix can be defined as follows:

NY _(A B\ (€mp
{M}L - (B D)L {Kmp}L Eq. 2-37
V3 = (D) {¥mp}, Eq. 2-38
where:
n
[A] = Z[Qi]‘]ktk ;L) =1,2,6 Eqg. 2-39
1
n
[B] = Z[Qij]ktkzk iij=1,2,6 Eq. 2-40
1
n t3
[D] = Z[Qij]k (tkz,i + (1—';>> ii,j =1,2,6 Eq. 2-41
1

5 AN
[H]z_ZZ[Qij]k te =z |tz t 5 | 0] =45 Eq. 2-42
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Note that [A], [B], [D] are all 3x3 symmetric matrices, whose coefficients are functions of
the thickness, orientation, stacking sequence, and material properties of the plies [4]. [4] is
the in-plane stiffness matrix that relates in-plane strains (€2, 639, y,?y) to in-plane forces
(Ny, Ny, Nyy). [D] is the bending stiffness matrix that relates curvatures (Ky, Ky, Kyy) t0
bending moments (My, M,,, My,,). [B] is the bending-extension coupling matrix that relates
the in-plane strains to the bending moments and curvatures to in-plane forces. And finally,
[H] is the transverse shear stiffness matrix that relates transverse shear strains (Vyzr Vxz)
to transverse shear forces (1}, V;).The bending effect accounted for by [B] does not exist
for homogeneous plates. Actually, if the laminate is symmetric with respect to the middle
surface, all the bending-extension coupling coefficients B;; are zero. On the other hand,
matrix [H] is only used within the context of first-order shear deformation theory (FSDT)
and not within the classical plate theory (CPT) because in the latter transverse shear strains
(Vyz» Yxz) are assumed to be zero.

A set of effective laminate engineering material properties (Young's modulus, shear
modulus and Poisson's ratios) can be determined from the laminate stiffness matrix, plate
thickness and plate bending stiffness of the actual laminate [4].

— A11A22 — A%Z

E Eq. 2-43

x t * Azz
E, = (A1142; — A3,)/(t - A1) Eq. 2-44
ny = A12/A22 Eq 2-45

Age
ny = T Eq. 2-46

Hyy
Gyz = — Eq. 2-47

H

Gy = % Eq. 2-48

Summarizing, the Classical Lamination Theory uses the ply unidirectional data, ply
thickness, orientation and stacking sequence of the plies to determine the laminate stiffness
matrix. The ply modulus matrix is determined from the unidirectional properties for each
ply. The stress and strain transformation matrices are determined for each ply and used to
transform the modulus terms to the laminate reference axis. Next section is devoted to
explain how individual ply elastic properties can be obtained from the actual properties of
the composite material components (i.e. fibre and matrix).
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2.3.3. Lamina equivalent elastic properties

Glossary

Symbol Description Units

E, Longitudinal Young modulus of fibre N/mm?

E, Transverse Young modulus of fibre N/mm?

Em Young modulus of the matrix N/mm?

Gy Shear modulus of the fibre N/mm?

G Shear modulus of the matrix N/mm?
Vs Volume fraction of fibre in an individual ply -
Vs Fibre's Poisson coefficient -
Vm Matrix Poisson coefficient -
Eyp1 Longitudinal Young's modulus of an unidirectional ply Pa
Eyp2, Eyps Transverse Young's modulus of an unidirectional ply Pa
Gypij Shear moduli of an unidirectional ply Pa
Vupij Poisson coefficients for an unidirectional ply -
e Individual layer thickness m
Ceq Woven balance coefficient for woven roving plies -
Erq Young modulus in warp direction of a woven roving lamina Pa
Er, Young modulus in weft direction of a woven roving lamina Pa
Ers Out-of-plane Young modulus of a woven roving lamina Pa
Grij Shear moduli of a woven roving lamina Pa
Vrij Poisson coefficients of a woven roving lamina Pa
Emat1r Emacz In-plane Youn modulus for a strand mat lamina Pa
Enats Out-of-plane Young modulus for a strand mat lamina Pa
Gmatij Shear modulus of a strand mat lamina Pa
Vmatij Poisson coefficients of a strand mat lamina Pa

In this section, expressions are presented that can be used to obtain the elastic properties
of individual plies from the actual properties of their constituent materials. The formulation
presented is in accordance with that reported in [5].

The elastic properties of an unidirectional (UD) lamina are estimated from the properties of
its constituents as follows:

Eups = Cup1 (Ey - Ve + Em - (1= Vf)) Eq. 2-49
E E c En 1+0.85- sz
vp2 = Eup3 = Lup2 ) . Eq. 2-50
1=vi (1-v)"* +'Z_m : _11’52
1 m
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G G Copny - Gy - Vs
up12 = byp1z = Lyp1z " bUr T/ Eqg. 2-51
T 1-— n: Vf
GUD23 = 07 . GUDlZ Eq 2-52
G
(55)-1
U — Eq. 2-53
(£)+1
Gm
Vup13z = Vyp12 = CUDV . [Vf . Vf + Vm (1 - Vf)] Eq 2-54
Eyp>
Vup21 = Vups1 = Vup1z " Eq. 2-55
UD1
Vupsz = Vupsz = Cupy * [Vf - Vp + Vi - (1 = V)] Eq. 2-56
E,
Ve = Ve — Eq. 2-57
f q
4 Ey

In the expressions above, Cypq, Cypa, Cyp12 and Cyp, are empirical constants that depend on
the actual nature of the fibres being considered. Following reference [5], actual coefficient
values for the most common fibre types are summarized in the following table.

E-Glass R-Glass Carbon HS Carbon IM Carbon HM | Para-aramid
Cyp1 1.00 0.09 1.00 0.85 0.90 0.95
Cyp2 0.80 1.20 0.70 0.80 0.85 0.90
Cyp1 0.90 1.20 0.90 0.90 1.00 0.55
Cypy 0.90 0.90 0.80 0.75 0.70 0.90

The elastic properties of for a woven roving lamina are estimated from the properties of its
constituents as follows:

Eono — 1 A Al Eq. 2-58
LE 11 Ay qg.
Eoy = 1 A Al Eq. 2-59
T2 = 5| A2z AL qg.
Er3 = Eyps Eqg. 2-60
1
Griz = e “ Azz Eqg. 2-61
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Gri3 = Gr3 =09 - Grqy Eq. 2-62
Vri2 = A12/A2 Eq. 2-63
Vr21 = Vriz2° (g_:) Eq. 2-64
Vr3z2 = Vr31 = M Eq. 2-65
Vr1z = VUDZS-;& Eq. 2-66

where:
A =e- (Ceq Q11 + (1 - Ceq) : sz)

Ay =e- (Ceq Qg + (1 - Ceq) : Q11)

Az =€ Q12
Azz =€ (33
0., = Eyp1
11 =
1 —vyp12 - Vup21
0,, = Eypa
22 =
1 —vyp12 - Vup21
_ Vypz1* Eyp1
Q12 =

1 —vypi2 - Vup21

Q33 = Gyp12

Finally, the elastic properties of a strand mat lamina are estimated from the properties of its
constituents as follows:

3 5
Enat1 = Emarz = r Eypr + r Eupa Eq. 2-67
Ematz = Eups Eq. 2-68
Emat1
Gmat1z = - Eq. 2-69

2- (1 + VmatZl)
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Gmat2s = Gmatz1 = 0.7 - Gyp1z Eq. 2-70
Vmat12 = Ymat21 = Ymat32 = Ymatr13 = 0.3 Eq. 2-71

2.4. Serial-Parallel rule of mixtures

In the classical lamination theory presented in section 2.7 individual composite plies are
treated as a continuum homogenized material. The laminate stiffness matrix is further
evaluated by using the classical lamination theory (CLT). To all effects, the laminated shell is
finally treated as an homogeneous orthotropic material.

RamSeries also provides an alternative formulation for FRP laminates in which a serial-
parallel (SP) continuum approach is considered [6], [7]. In the SP formulation, the composite
material components (namely fibres and matrix) behave as parallel materials in the
direction of the fibres alignment and as serial materials in the orthogonal directions. At the
same time, each material component is treated taking into account its own constitutive law
so that the micro-mechanics of unidirectional composite plies can be assessed. The Serial-
Parallel model is further complemented with the application of the rule of mixtures at the
level of the laminate to describe the mechanical behaviour of multilayered composite
materials [6].

The aim of using the SP model is to assess the mechanical behaviour of the composite as a
whole but retaining the individual behaviour of its components (i.e. matrix and fibres). The
non-linear behaviour of composite structures due to material degradation is also assessed
with the SP model as far as the non-linear behaviour of the constituents is considered in
their respective constitutive models. This is not the case in the classic lamination theory in
section 2.7 where the material is considered to be linear elastic.

The SP-RoM formulation can be described as follows. First, the heterogeneous composite
material is characterized by a composite material domain (c) that can be decomposed into
two non-overlapping subdomains associated to the matrix (m) and fibre (f) components
respectively:

Qe = Qp UGy Eq. 2-72
The matrix and fibre volumetric fractions are denoted by k,,, and k; respectively so that:

K + kp =1 Eq. 2-73

Then, average stress and strain fields can be defined as:

fﬂc edV _ fﬂm eav fnf edV

€c = m = 6T Eq. 2-74
fﬂmdv fﬂde a.

[ av

)
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_ fﬂcadV _ fﬂmadV _ foO'dV
Opi=—— g i=—"—— gy i=———
Jo AV Jo, AV Jo, AV

And by virtue of the rule of mixtures we can decompose the strain and stress fields as:

€c = km€m + kres
Eq. 2-75
O; = kmom + kroy

Regarding the stress as a dependent variable, the material's constitutive law is given by the
following set of differential equations:

6; = g;(€;, Bi, €;)
Eqg. 2-76

Bi =hi(e;, Bi €)
where i = m, f and B denotes a vector of internal variables.

Now, the stress and strain fields need to be decomposed in their serial and parallel
components. To this aim, appropriate projector tensors are constructed as follows:

Ni; = e;®eq
P, = N1 ®Ny4 Eq. 2-77
P=1-P,

where e;is the unit vector parallel to the fibre direction, N;,is the projector second order
tensor corresponding to e;, Fyis the parallel fourth order projector tensor and Fy is the
serial counterpart.

Hence, the following decomposition can be applied to the composite's stress and strain

fields:
€, = Pyi€
€, =P:e
CTE T Eq. 2-78
op = B0
o, =F:0
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0 =0y + 0

The above decomposition, which is applied to the composite stress and strain fields, are
analogously extended to matrix and fibre materials.

Finally, an appropriate closure equation must be devised for long fibre reinforced polymer
composites. In this case, the usual and simpler assumption is the one that considers an
isostrain condition in the parallel direction and an isostress condition in the serial direction.
This results in what is known the basic serial parallel (BSP) closure equations that read as

follows:
€m = €F
Eqg. 2-79
Om = 0f

Hence, the governing equations of the serial-parallel problem are the constitutive laws of
matrix and fibre materials in Eq. 2-76, the equations that relate average strain and stresses
in Eg. 2-75 and the closure equations Eq. 2-79.

The serial-parallel composite solver algorithm implemented in RamSeries as a constitutive
law consists in the following steps:

1. Initial approximation of the unknown: the known variables are the converged

strains  ‘eand internal variables !B. The converged strains can be decomposed
into its respective fibre and matrix components for the parallel part. And having
stored the serial part of the matrix strain ‘e, (or being zero at the very beginning),
the different serial strains can be obtained. To this aim, first the tangent constitutive
tensor must be constructed for each composite component:

‘Ci( e Bu),i=mf Eq. 2-80
Next, from the tangent constitutive tensor, the following data is computed:
e’ = kiem + kfef
AeS =t+1 gS_tgs

—t+1 t.p
AeP =tT1 eP-ter

Eq. 2-81
A = (kG5 + kpCS5) ™
Aesy = A: [CFS APk, (CFF — ChY)AeP ]
Finally, the initial approximation can be obtained as:
€5, =t €3, + Aes, Eq. 2-82
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2. Evaluate the stress residual: to this aim, first the composite component strains must
be composed:

€Em = €0 + €5,

. N
€ = €; + €
booe o Eq. 2-83

Next, the stresses can be evaluated for each material component using the

corresponding homogeneous constitutive law and the stress residual computed in the
following form:

Ui(Ei' :Bi)li = m'f
Eq. 2-84
Ao® = o, — of = Ps: (0 — 0f)
3. Check convergence:

|Acs|| > T Eq. 2-85

4. If not converged, update the constitutive tensor and the unknown and return to
step 2:

1€ (e, B)

k
] =G5+ k—’:C,fs Eq. 2-86

€5, =€, — ] Ao’
5. If converged, update the variables for each composite component:
e = o)
Hl(ﬁ)i = t(ﬁ)i Eq. 2-87

t+1(o.)i — t(E)i

2.5. The Tsai Wu failure criteria

Of the many failure criteria available, RamSeries implements the Tsai-Wu. This corresponds
to a first ply failure analysis for which the sequence of load application is not significant.
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First ply failure criteria can be used to assess the global strength of a laminate and is the
most common criteria used in linear analysis. Within this context, the structural integrity is
usually reported in terms of a reserve factor or margin of safety R. Nevertheless, many of
the failure criteria are formulated in terms of an expression that provides a failure index FI,
where failure is considered to have occurred if the failure index is equal or greater than
unity.

The Tsai Wu failure criteria, like the Hoffman criteria, takes into account the difference in
tensile and compressive strengths in the longitudinal and transverse directions of the ply.
The failure index is given by [8]:

FI = Fy10f + Fy50% + 2F,,(0,03) + Fee0ty + Fi04 + Fy0, Eq. 2-88
where:
A= () - () S
=|l—] = — q -
PSSy
h=(L)-(2) o 261
=|—] | — q -
2 \Sn) \Sg,
F. - Eqg. 2-91
" SuSa A
Fy, = - Eq. 2-92
" SuSe A
F66 = 1/T122 Eq 2-93
F12 = _0.5(F11F22)0'5 Eq 2-94

By replacing the applied stress by the strength (defined as a ratio R times the applied stress)
in the failure index expression and equating to unity the following expression is obtained:

1.0 = F;;R?0? + F,,R?*0? + 2F;,R%*(0,0,) + FecR%?0% + FiRo, + F,Ro,  EQ.2-95
The strength ratio Rcan be seen as a safety factor or reserve factor, so that if R > 1 the
applied stress level is below the strength of the material. On the other hand, if R < 1 then
failure is predicted.

The above expression can be arranged in quadratic form as:
aR?+bR+c=0 Eq. 2-96

where:

a= [F110'12 + Fzzo-zz + 2F12 (0102) + F66O-122] Eq 2-97
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b = [F10'1 + anz] Eq 2-98
c=-1.0 Eq. 2-99

By solving for R the reserve factor RF is obtained.

2.6. J-2 plasticity theory

The J2 plasticity model is based on the following considerations:

1. Additive decomposition of the strain tensor. In this case one assumes that the strain
tensor € can be decomposed into an elastic and a plastic part € = €® + €P

2. Elastic stress response. The stress tensor o is related to the elastic strain by means
of a stored-energy function W according to the relation o = dW /d€. In the
particular case of linear elasticity, W is a quadratic form of the elastic strain, i.e.

1 . . . . .
W = EEB:C: €, where C is the elastic stiffness tensor which is assumed to be

constant. Then, the stress tensor can be written in the form o = C: (€ — €P).

3. The yield condition is defined by means of the so called yield criterion function
f(o,q), where q is a vector of internal variables. The admissible states of the
material {a@,q} are constrained as to fulfil the inequality f(a,q) < 0. A typical
choice of internal variables for metal's plasticity is q = {&, B}, where § is the
equivalent plastic strain that defines the isotropic hardening of the Von Mises yield
surface, and B defines the center of the Von Mises yield surface in the stress
deviatoric space. The resulting J2-plasticity model has the following yield condition:

n =dev(o)—B,tr(f) =0 Eq. 2-100
2
flo,@) =ym:n— |3KE) Eq. 2-101

4. Flow rule and hardening law. The flow rule and hardening law for a J2-plasticity
model is given by:

n
deP = — Eq. 2-102
N
2 n
dp=y-H(E)— Eq. 2-103
3 Jin
dé =y z Eq. 2-104

3
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Further explanations can be found in Simo and Hugues (1997).

2.7. Isotropic damage constitutive model

Glossary
Symbol Description Units
d Damage variable -
o Uniaxial apparent stress Pa
a Uniaxial effective stress Pa
E Stiffness modulus Pa
Esecd Damage secant stiffness modulus Pa
v Helmholtz free energy density Jm?
pe Elastic strain energy Jm?
o Apparent Cauchy stress tensor N/m?
o Effective Cauchy stress tensor N/m?
€ Strain tensor -
(0 Undamaged elastic tensor N/m?
Csecd Damage secant stiffness tensor N/m?
Ty Stress energy norm N"2/m
T, Strain energy norm N"2/m
F Damage criterion in stress space N"2/m
G Damage criterion in strain space N"?/m
r Damage threshold internal variable N"2/m
q Hardening/softening internal variable N"%/m
¢ Damage consistency parameter N"?/m-s
H Softening/hardening modulus N"2/m
Ty Initial (undamaged material) damage threshold N"2/m
H4 Linear hardening/softening parameter -
oo Saturation equivalent stress for exponential hardening law N"?/m
A Exponential parameter for the exponential hardening law -
Gy Fracture energy N/m
o Energy norm for symmetrical tension/compression damage N"2/m
model
! Energy norm for tension only damage model N"2/m
Tl Energy norm for non-symmetrical damage model N"2/m

The damage model implemented in RamSeries follows the isotropic damage model
described in [9], [10] and [11] which is based on the monotonic evolution (no healing effects)
of the damage.

2.7.1. One-dimensional isotropic damage model
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A simple 1D rheological model can be developed by considering that a material point is
subjected to an apparent stress (o) that acts on an apparent section (s), but due to the
existence of micro-defects only the undamaged or effective section (5) is sustaining the
applied load, thus resulting in the existence of an effective stress (). Then, by considering
the force balance, the following equilibrium equation is obtained:

SO =S80 Eqg. 2-105
which can be rewritten:
Sa\ _ _
0=(1—?)0=(1—d)0 Eq. 2-106

where s;is the damaged section and the dimensionless ratio s;/srepresents the damage
variable denoted by d, whose value must be within the range 0 < d < 1.

A simple constitutive equation to describe the one-dimensional isotropic damage model can
be stated as follows:

o = Es¢d¢ Eq. 2-107

where
Esecd = (1 — d)E Eq. 2-108
is the damage secant stiffness modulus. It can be observed from this relation that the
damage variable can be interpreted as a measure of the loss of stiffness modulus of the

material. The characteristic stress-strain behaviour of a material with isotropic damage is
illustrated in Figure 2-6 in the form of a uniaxial stress-strain curve.

Loading(damage)

Elastic imit

\_.’n.lmdiug / elastic loading

E:er_d _ {1 _ d)E

P

Figure 2-6. One-dimensional stress strain curve characterizing the elastic-isotropic damage behaviour.

The energy equation of the system can be written as follows:

1 1
‘P=Eea=(1—d)§EEe=(1—d)‘Pe Eq. 2-109
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where W€ is the elastic strain energy.

2.7.2. Three-dimensional extension of the isotropic damage model

Note that the damage model described in the previous section depends on a single internal
variable, namely the damage parameter d. This implies that the degradation of the material
is independent of the orientation so that the damaged elasticity tensor remains isotropic. To
extend the isotropic damage model to the more general three-dimensional situation, let us
generalize the expression of the Helmholtz free energy in Eq. 2-109 in the following form:

1
‘Pz(l—d)‘l’ez(l—d)if:((]e:f Eqg. 2-110

where the elastic strain energy W¢(e) is a function solely of the strain and C° is the
elasticity tensor of the undamaged material.

By thermodynamic considerations it can be demonstrated that the following expressions
must hold:

6 = 0¥/ de Eq. 2111
d>0 Eq.2-112

By developing the rate of change of the Helmholtz free energy in Eq. 2-111, a constitutive
equation suitable for the isotropic damage model can be obtained.

0¥(e, d)
o=——""—+

S =(1-dCe=(1-d)7 Eq. 2113

where 0 is the effective Cauchy stress tensor defined as:
og==C%€¢ Eq. 2-114

From Eq. 2-115 it can be observed that, since the damage parameter is a scalar, the stiffness
degradation is isotropic. The stress can be immediately computed once the strain (€) and
the damage internal variable (d) are known. And the constitutive equation can be
interpreted as the sum of an elastic and an inelastic part.

0=(1-d)C%e=C%€—dC%e=0c°—0' Eq. 2-115
Finally, Eq. 2-108 that defines the one-dimensional damage secant stiffness modulus can be
generalized to the three-dimensional case by defining the elastic-damage stiffness tensor in

the following form:

csecd — (1—d)Ce Eq. 2-116
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Summarizing, the damage constitutive model is completely determined when de damage
variable d is known at each time step of the loading/unloading process and when the
constitutive equation is supplemented with a damage surface and a damage criterion plus a
set of evolution laws for the internals variables and an energy norm of the stress (or strain)
tensor. The various elements of the constitutive model listed here are briefly described in
the following sections:

Energy norm in the stresses/strain space

A norm in the stress/strain space is a scalar measure that describes the stress/strain state at
the current position of the material. A simple norm can be defined in terms of the
equivalent stress (T,) and equivalent strain (7) quantities defined as:

7, =+V0:Ce o Eq. 2-117

7. =Ve:Ce € Eq.2-118
7, = (1 —d)1, Eq.2-119

E a

i
7T.=01-d)7, G,

= '\ e

L3 s
——

=l

a

=
3

I
=

a) Strain prncipal space b) Stress principal space

Figure 2-7. Damage surface in the strain (a) and stress (b) spaces that defines the damage criteria in
terms of the stress/strain state at each point of the material.

Damage criterion
The damage criterion can be defined either in stress or strain space as follows:
F(5q) =1,—q() <0 Eq. 2-120
Gr,r)=1t.—-71r<0 Eq. 2-121

where 7 is an internal variable than can be interpreted as the current damage threshold and
q is a function of r defining a hardening/softening variable. Both 7 and q are related to the
damage variable d. The damage criterion given by Eq. 2-120 implies that the stress state
must be on or inside the damage surface. In the case of the stress state lying inside the
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damage surface, the material exhibits elastic behaviour either in a loading or unloading
condition. On the contrary, in the case of the stress state lying on the damage surface, the
material will behave elastically or continue increasing the damage depending on the actual
loading condition.

From Eqg. 2-121, it is observed that the undamaged material initial value (ry) of the damage
threshold determines the initial yield in the strain space so that the material starts fail when
the strain energy norm exceeds the value 1,. From a uniaxial test the value of 1y can be
related to the yield stress measured in the laboratory:

Oy
To = NG Eq. 2-122
Evolution law
The evolution laws for the yield limit (r) and for the damage variable (d) are:
7 ={(€1) Eq.2-123
d={H(t.,d) Eq. 2-124

where ( is the damage consistency parameter and H is the continuum
softening/hardening modulus.

Linear hardening/softening law

For the linear hardening/softening law it is assumed that g has the following linear relation
with 7:

To r<0

Eq. 2-125
To+HY (r—1r) <0 r>rn a

q(r) ={

so that the hardening law is fully characterized by the value of the initial damage threshold
1o and the value of the hardening (softening) parameter H? that, as shown in the figure,
corresponds to the slope of the linear hardening/softening relation. As expected, positive
values of H'® correspond to hardening behaviour while negative values correspond to
softening.
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-
Ib F'{d=1] T

Figure 2-8. Schematic representation of the linear hardening/softening law

Exponential hardening/softening law

In the case of an exponential hardening/softening law, the relation of g with r can be
expressed as follows:
A(1-= i
q(r) = o — (g — To)e ( TO) Eqg. 2-126

A

q(r)

qﬂlﬂ

Figure 2-9. Schematic representation of the exponential hardening/softening law

The hardening law is again fully characterized by two scalar values, the saturation
equivalent stress g and the exponential factor A which is related to the fracture energy G
of the material by the following expression [12]:

G -1
A= zf _1 Eq. 2-127
T'O * l* 2

Summary of the isotropic damage model
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The fundamental ingredients of the isotropic damage model described in the previous
sections can be summarized, as it is done in [11], assuming a small deformation
approximation and adopting a description where the strain is the free variable.

Helmholtz free ) 1
energy Y(er) = (1 — d(r))‘Pe ,with ¢ = E(e: Cé:¢) Eq. 2-128
bamage d(r)=1—g'qe[r al,a # o ;d €[0,1] Eq. 2-129
parameter r’ 0r =l ’ ’ :
Constitutive ¥ _
equations 0=—-= 1-d)o=(1-d)C%€ Eq. 2-130
rE [7‘0, OO)
Evolution law F=05, = Floeg = Oy Eq. 2-131
0 t=0 \/E
Damage criterion g(g’ r) = Te—T = Ve Cé:e—7r Eq. 2-132
Hardening law Gg=Hr)r;,*=q'@)<0 Eq. 2-133

2.7.3. Energy norms

The actual behaviour of the damaged material is strongly influenced by the yield damage
surface but also by the actual energy norm under consideration. Three different energy
norms are implemented in RamSeries, which are commonly used together with the isotropic
damage model.These are briefly described in what follows.

Symmetrical tension-compression damage model (mode 1)

This model can be used when the material behaves the same under tension or compression.
In this case the energy norm can be expressed as:

L =Vo:C o= (1-d)o:€ Eq. 2-134

where [* is the characteristic length of the finite element.

For the sake of illustration, it is useful to consider a plane stress condition, in which case the
damage surface is represented by an ellipse. By considering the mode I energy norm, we
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are assuming the stress limit oy to be the same in tension and compression. Additionally,
the damage surface is assumed to evolve symmetrically as shown in the following figure.

G, 4 o

oy fo=1

Figure 2-10. Schematic representation of damage model's Mode I energy norm. (a) Damage surface
corresponding to a plane stress condition. (b) Uniaxial stress-strain curve in tension and compression.

Tension-only damage model (Mode 11)

In this model, damage is assumed to occur only in tension. Under compression, the material
will always behave elastically and will never fail. In this case, the energy norm can be

defined as:
T = la+:Ce o Eqg. 2-135
where
o+ |o
ot = ¢ Eq. 2-136
2
and the relationship between real and effective stress still holds:
ot =(1-d)a* Eq. 2-137

As in the previous section, it is useful to represent the Mode II damage surface
corresponding to a plane stress condition and the uniaxial stress-strain curve for the
corresponding material.
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Figure 2-11. Schematic representation of damage model's Mode II energy norm. (a) Damage surface
corresponding to a plane stress condition. (b) Uniaxial stress-strain curve in tension and compression.

Non-symmetrical damage model

Finally, Mode III energy norm can be used to simulate the mechanical response of materials
whose behaviour under tension differs from that I n compression. A typical application of
this kind of energy norm is to model materials like concrete which exhibit quite larger

strength in compression than in tension. The following energy norm can be used in these
cases:

1-46
. (9 e )m Eq. 2-138
where 6 is a weight factor that depends on the actual stress state as follows:

_ ?=1<Ui)

Eq. 2-139

and the parametern is defined as the ratio between the compression and the traction
elastic limits.

n=— Eq. 2-140

The Macaulay bracket {(g;) in the above expression is defined as:

o; + |o]

Eq. 2-141
5 q

(0y) =

The schematic representation of Mode III damage model is shown in the following figure.
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Figure 2-12. Schematic representation of damage model's Mode III energy norm. (a) Damage surface
corresponding to a plane stress condition. (b) Uniaxial stress-strain curve in tension and compression.
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3. Dynamic analysis

In this section a brief summary of the theory of dynamic analysis of structures is provided.

3.1.  Directintegration

The direct integration methods seek the time history of the dynamic response. Such a
response is not obtained in continuous form but rather in a predetermined discrete series
of points in time t;. One of the most popular direct integration methods is the Newmark
method. The starting point of the problem is the governing equation of a structure with
various degrees of freedom. Such a governing equation can be written in the following
form:

MD + CD + KD = P(t) Eq. 3-1
For time t = t;, this equation is discretised as follows:
MD;,; + CDi; + KD;,; = P; Eq.3-2

On the other hand, the velocity and the acceleration are expressed as follows:

. Y Y\ . Y .

Di+1 = m [Di+1 — Di] + (1 — E) Di + (1 — ﬁ) AtDi Eqg. 3-3
.. 1 1 ..
Byu = 5z Dies = Dics —Didt] = (35— 1) by Fq. 3.4

Substituting these expressions into the equation of motion, we obtain:

KD, = Piyy Eq. 3-5
where,
K°=K+ ! M+yC Eq. 3-6
BAt2 BAt &

1 1 . 1 ..
f+1=Pi+1+M[ﬁAtZDi+ﬁAtDi+(ﬁ—l)ni]
C|—D; ——1|D; — — 1] AtD;
* [[S’At 1+([S’ ) ‘+<2,6’ ) ‘]

Eq. 3-7

Usually, the initial conditions to close the problem consist on assuming that the structure
has neither displacements nor velocity.
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3.2. Modal analysis

Eqg. 3-1 represents the system of equations corresponding to a structure with n degrees of
freedom. The corresponding free vibrations not damped problem is represented by the
following equation:

MD+KD=0 Eq. 3-8

Assuming the displacement vector is going to have a sinusoidal response in time, the
admissible solutions to the above problem will be a linear combination of solutions to the
generalized eigenvalue problem:

w?MD = —KD Eq. 3-9
where w? is the eigenvalue. Hence, by solving a classic eigenvalue problem, the natural
vibration modes of the structure can be found. The solution eigenvectors, which are
orthogonal to both the mass and the stiffness matrix, form a complete base of the
displacements vector field. Hence, free vibration displacements can be written as a linear
combination of the modal vectors @;:

n
D = Z @;yi(t) Eq. 3-10
i=1

where y;(t) are scalar functions of time, called generalized coordinates.

Using the previous expressions and taking into account the orthogonality conditions, we
can transform the governing equation as to obtain the following system of n equations with
one degree of freedom each:

M;§;(t) + C;y;(t) + K;y;(t) = @] P(t) Eq. 3-11
where:
M; =@ Mg, Eq. 3-12
C;=¢)Cy; Eq. 3-13
Ki =9 Ko, Eq. 3-14

3.3. Spectral analysis

Spectrum analysis is typically used in RamSeries to solve dynamic problems associated to
seismic actions that enforce the movement at the base of the foundation of a given
structure. To this aim, the decoupled equation of motion for each mode is expressed as:
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M;y;(6) + Cy;(t) + Kjy;(t) = ————a(t) Eqg. 3-15
QMo

where a(t)is the seismic acceleration. This equation can be solved using the response
spectra. In this case, only the maximum response of the structure is obtained taking into
account the maximum acceleration |a(t)|nq = S. In this case, it is evident that the
maximum response acceleration of the system would amount to:

T
@;Mj
ly: (O lmax = T] S Eq. 3-16
QMo

As a consequence, the maximum displacement is given by:

T
oM/ S
(t =t = Eq.3-17

Using this solution, we can calculate the maximum displacements in all the nodes of the
discrete structure for mode j in the following form:

) |
i —|Dl=g Iv _ M S S
Dinax _llZJI =Q; |y](t)|max =Q; ?M(p] (1)]2 —A] (1)]-2 Eq. 3-18
Dy

where A is the vector of the modal participation coefficients corresponding to mode j of the
vibration. Supposing that for each degree of freedom the maximum response does not
occur at the same instant in each mode, the maximum response of the structure will not be
equal to the sum of the maximum corresponding to each mode:

Doy # D; Eq. 3-19

n
i=1
Different formulas to find the value of Dthrough Dhave been proposed. The most simple
and, at the same time, most used is that which establishes that the response is equal to the
square root of the sum of the squares of the modal responses:

EqQ. 3-20

As for the stresses, reactions and in general any response R which is to be determined, we
can get analogously:
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Eq. 3-21

4. Non-linear analysis

This section provides a summary of the non-linear theories of solids and structures
considered in RamSeries. Several aspects concerning the solution of a non-linear system of
equations are addressed. Typical non-linear constitutive models for metals, like the J-2
plasticity theory, are also explained.

4.1. Non-linear systems of equations

All strategies for the resolution of a non-linear system of equations are related with the
decomposition of the non-linear problem in several linear systems each of them solved
using the well-established methods for the solution of linear problems. A well-known of
these strategies is the Newton-Raphson method. It consists on an incremental-iterative
scheme for which the total applied load is decomposed into several increments. For each
increment, an iterative procedure is performed until the desired convergence criteria is
achieved. There are several methods to control the fulfilment of the load-displacement
curve of the structure. Each one of these methods is actually based on the control of a
different parameter, like for instance the load, the displacement or the arc-length
increments. Some advanced procedures, like the line-search, automatic incrementation or
automatic arc-length switch can be applied to speed-up the calculations.

Deeper explanations can be found in [13] and [14].
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