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1. INTRODUCTION 

 

Tdyn is a numerical simulation solver for multi-physics problem that uses the stabilized 

(FIC) finite element method. Using this stabilized numerical scheme, Tdyn is able to 

solve for instance heat transfer problems in both, fluids and solids, turbulent flows, 

advection of species and free surface problems. This document gives a short overview 

of the theoretical principles that Tdyn is based on.  
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2. NAVIER STOKES SOLVER (RANSOL MODULE) 

2.1 Governing equations 

The incompressible Navier-Stokes-Equations in a given three-dimensional domain  

and time interval (0, t) can be written as: 

 

 �� ����� + �� · ∇��� + ∇
 − ∇ · ��∇�� = ��  in Ω × �0, ��∇� = 0  in Ω × �0, ��� (2-1) 

 

where u = u (x, t) denotes the velocity vector, p = p (x, t) the pressure field,  the 

(constant) density,  the dynamic viscosity of the fluid and f the volumetric 

acceleration. The above equations need to be combined with the following boundary 

conditions: 

 

 

� = �� in Γ� × �0, ��
 = 
� in Γ� × �0, ��� · � · �� = 0, � · � · �� = 0, � · � = � in Γ × �0, !���", 0� = �#�"� in Ω� × �0�
�", 0� = 
#�"� in Ω� × �0�
 (2-2) 

 

In the above equations, Γ ≔ �Ω, denotes the boundary of the domain Ω, with n the 

normal unit vector, and g1, g2 the tangent vectors of the boundary surface . uc is the 

velocity field on D (the part of the boundary of Dirichlet type, or prescribed velocity 

type), pc the prescribed pressure on P (prescribed pressure boundary).  is the stress 

field, �  the value of the normal velocity and u0, p0 the initial velocity and pressure 

fields. The union of D, P and M must be ; their intersection must be empty, as a 

point of the boundary can only be part of one of the boundary types, unless it is part of 

the border between two of them. 

 

The spatial discretization of the Navier-Stokes equations has been done by means of the 

finite element method, while for the time discretization an iterative algorithm that can 

be consider as an implicit two steps "Fractional Step Method" has been used. Problems 

with dominating convection are stabilized by the so-called "Finite Increment Calculus" 

method, presented below. 

 

2.2 CFD algorithms and stability 

Using the standard Galerkin method to discretize the incompressible Navier-Stokes 

equations leads to numerical instabilities coming from two sources.  Firstly, owing to 

the advective-diffusive character of the governing equations, oscillations appear in the 

solution at high Reynolds numbers, when the convection terms become dominant.  
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Secondly, the mixed character of the equations limits the choice of velocity and pressure 

interpolations such that equal order interpolations cannot be used. 

 

In recent years, a lot of effort has been put into looking for ways to stabilize the 

governing equations, many of which involve artificially adding terms to the equations to 

balance the convection, for example, the artificial diffusion method [7]. 

A new stabilization method, known as finite increment calculus, has recently been 

developed [5, 6]. By considering the balance of flux over a finite sized domain, higher 

order terms naturally appear in the governing equations, which supply the necessary 

stability for a classical Galerkin finite element discretization to be used with equal order 

velocity and pressure interpolations. This method has been Christianized “Finite 

Calculus” (FIC). 

 

2.2.1 Finite calculus (FIC)formulation 

To demonstrate this method, consider the flux problem associated with the 

incompressible conservation of mass in a 2D source less finite sized domain defined by 

four nodes, as shown in Figure 1. 

 

 
Figure 1 Mass balance in 2 dimensions 

 

Consider the flux problem (mass balance) through the domain, taking the average of the 

nodal velocities for each surface. 

 

 

ℎ&2 ()�* − ℎ+ , ,� + )-* − ℎ+, , − ℎ&. − )�*, ,� + )-*, , − ℎ&./
+ ℎ+2 ()-*, , − ℎ&. + )-* − ℎ+, , − ℎ&.− )�* − ℎ+, ,� + )�*, ,�/ = 0 

(2-3) 

 

Now expand these velocities using a Taylor expansion, retaining up to second order 

terms. Write u (x,y) = u: 

 

 )�* − ℎ+, ,� = ) − ℎ+ �)�* + ℎ+02 �0)�*0 − 1�ℎ+2�  (2-4) 

 

and similarly for the other two components of the velocity. 
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Substituting this back into the original flux balance equation gives, after simplification, 

the following stabilized form of the 2D mass balance equation: 

 

 
�)�* + �,�, − ℎ+2 3�0)�*0 − �04�*�,5 − ℎ&2 3 �0)�*�, − �04�,05 = 0 (2-5) 

 

Note that as the domain size tends to zero, i.e. 0, yx hh , the standard form of the 

incompressible mass conservation equation in 2D is recovered.  The underlined terms in 

the equation provide the necessary stabilization to allow a standard Galerkin finite 

element discretization to be applied. They come from admitting that the standard form 

of the equations is an unreachable limit in the finite element discretization, i.e. by 

admitting that the element size cannot tend to zero, which is the basis for the finite 

element method.  It also allows equal order interpolations of velocity and pressure to be 

used. 

 

2.2.2 Stabilized Navier-Stokes equations 

The Finite increment Calculus methodology presented above is used to formulate 

stabilized forms of the momentum balance and mass balance equations and the 

Neumann boundary conditions. The velocity and pressure fields of an incompressible 

fluid moving in a domain Ω  R
d
(d=2,3) can be described by the incompressible Navier 

Stokes equations: 

 

 �� �)6�� + � �)6)7�*7 + �
�*6 − �867�*7 = ��6�)6�*6 = 0 ⎭⎪⎬
⎪⎫  =, > = 1, @ (2-6) 

 

Where 1 ≤ i, j ≤ d, ρ is the fluid density field, ui is the ith component of the velocity 

field u in the global reference system xi, p is the pressure field and sij is the viscous 

stress tensor defined by: 

 

 867 = 2A �B67 − 13 �)D�*D E67� ,     B67 = 12 3�)6�*7 + �)7�*65 (2-7) 

 

The stabilized FIC form of the governing differential equation (2-6) can be written as 

 

 FGH − 12 ℎ670 �FGH�*7 = 0    in Ω (2-8) 

 

 FI − 12 ℎ7I �FI�*7 = 0    in Ω (2-9) 
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Summation convention for repeated indices in products and derivatives is used unless 

otherwise specified. In above equations, terms 
imr and 

d
r  denote the residual of Eq. (2-6) 

, and
m

ij
h , 

d

j
h  are the characteristic length distances, representing the dimensions of the 

finite domain where balance of mass and momentum is enforced. Details on obtaining 

the FIC stabilized equations and recommendation for the calculation of the stabilization 

terms can be found in Oñate 1998. 

 

Let n be the unit outward normal to the boundary Ω, split into two sets of disjoint 

components Γt, Γu where the Neumann and Dirichlet boundary conditions for the 

velocity are prescribed respectively. The boundary conditions for the stabilized problem 

to be considered are (Oñate 2004): 

 

 �J7�67 − �6 + 12 ℎ67GJ7FGH = 0  on ΓL)7 = )7M  on ΓN� (2-10) 

 

Where , p
i jt u  are the prescribed surface tractions and ij  is the total stress tensor, 

defined as 

 

 �67 = 867 − 
E67 (2-11) 

 

Equations (2-8) - (2-10) constitute the starting point for deriving stabilized FEM for 

solving the incompressible Navier-Stokes equations. An interesting feature of the FIC 

formulation is that it allows using equal order interpolation for the velocity and pressure 

variables (García Espinosa 2003, Oñate 2004). 

 

2.2.3 Stabilized integral forms 

From the momentum equations, the following relations can be obtained (Oñate 2004) 

 

 � �FI�*6 = ℎ66G2O6
�FGH�*7O6 = 2�3 + )6ℎ6I2  ⎭⎪⎬

⎪⎫     no sum in = (2-12) 

 

Substituting the equation above into Eq. (2-9) and retaining only the terms involving the 

derivatives of 
imr with respect to ix , leads to the following alternative expression for the 

stabilized mass balance equation 

 

 rT − U τV
WX
VY�

∂r[\�*6 = 0,    ]6 = 3 8�3ℎ77Gℎ7I + 2�)6ℎ66G 5_�      no sum in = (2-13) 

 

The i ’s in Eq. (2-13) when multiplied by the density are equivalent to the intrinsic time 

parameters, seen extensively in the stabilization literature. The interest of Eq. (2-13) is 
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that it introduces the first space derivatives of the momentum equations into the mass 

balance equation. These terms have intrinsic good stability properties as explained next. 

 

The weighted residual form of the momentum and mass balance equations is written as 

 

 �` A6 aFGH − 12 ℎ7 �FGH�*7 b cΩ + ` A6 dJ7�67 − �6 + 12 ℎ7J7FGHe cΓ = 0 
ΓH

 
Ω

` f gFI − U ]6
h

6Y�
�FGH�*6 i cΩ

 
Ω

= 0 ⎭⎪⎬
⎪⎫

 (2-14) 

 

where ,iv q are generic weighting functions. Integrating by parts the residual terms in the 

above equations leads to the following weighted residual form of the momentum and 

mass balance equations: 

 

 � ` A6FGHcΩ + ` A6-J7�67 − �6.cΓ + ` 12 ℎ7 �A6�*7 FGHcΩ = 0 
Ω

 
ΓH

 
Ω

` fFIcΩ + ` gU ]6
h

6Y�
�f�*6 FGHi cΩ − ` gU fF6J6

h
6Y� FGHi cΓ = 0 

Γ

 
Ω

 
Ω ⎭⎪⎬

⎪⎫
 (2-15) 

 

We will neglect here onwards the third integral in Eq. (2-15) by assuming that 
imr  is 

negligible on the boundaries. The deviatoric stresses and the pressure terms in the 

second integral of Eq. (2-15) are integrated by parts in the usual manner. The resulting 

momentum and mass balance equations are: 

 

 

` A6� 3�)6�� + )7 �)6�*7 5 + �A6�*7 3� �)6�*7 − E67
5 cΩ − 
Ω

` A6��6cΩ

 
Ω− ` A6�6cΓ

 
Γ

+ ` ℎ72 �A6�*7  FGHcΩ

 
Ω

= 0 

(2-16) 

 

and 

 

 ` f �)6�*6 cΩ

 
Ω

+ ` gU ]6
h

6Y�
�f�*6 FGHi cΩ

 
Ω

 = 0 (2-17) 

 

In the derivation of the viscous term in Eq. (2-16) we have used the following identity 

holding for incompressible fluids (prior to the integration by parts) 

 

 
∂sVj∂xj = 2� �B67�*7 = � �0)6/�*7�*7  (2-18) 

2.2.4 Convective and pressure gradient projections 

The computation of the residual terms are simplified if we introduce the convective and 

pressure gradient projections ic  and i , respectively defined as 
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m6 = FGH − )7 �)6�*7n6 = FGH − �
�*6
 (2-19) 

 

We can express the residual terms in Eq. (2-16) and Eq. (2-17) in terms of ic  and i , 

respectively which then become additional variables. The system of integral equations is 

now augmented in the necessary number by imposing that the residuals vanish (in 

average sense). This gives the final system of governing equations as: 

 

 

` A6� 3�)6�� +  )7 �)6�*7 5 + �A6�*7 3� �)6�*7 − E67
5 cΩ − ` A6��6cΩ −  
p

 
p −  ` A6�6cΓ 

rs +  ` ℎD2 � �A6�*D
 

p 3)7 �)6�*7 + m65 cΩ = 0   

 ` f �)6�*6
 

p cΩ +  ` gU ]6
h

6Y�
�f�*6 � �
�*6 + n6�i 

p cΩ = 0 (2-20) 

 ` t6  3)7 �)6�*7 + m65 
p cΩ = 0              no sum in =  

 ` u6  3�
6�*7 + n65 
p cΩ = 0                 no sum in =  

 

Being i,j,k = 1,N and bi, wi the appropriate weighting functions. 

 

 

2.2.5 Monolithic time integration scheme 

In this section an implicit monolithic time integration scheme, based on a predictor 

corrector scheme for the integration of Eq. (2-20) is presented. 

Let us first discretize in time the stabilized momentum Eq. (2-8), using the trapezoidal 

rule (or θ method) as (see Zienkiewicz 1995): 

 

 

� 3)6vw� − )6vE� + ��*6  -)6)7.vwx5 + �
vw��*6 −  �867vwx�*7 −  ��6vwx
− 12 �ℎG7 ��*7  3)7vwx �)6vwx�*7 +  m6vwx5 = 0 

(2-21) 

 

where superscripts n and θ refer to the time step and to the trapezoidal rule 

discretization parameter, respectively. For θ = 1 the standard backward Euler scheme is 

obtained, which has a temporal error of 0(t). The value θ = 0.5 gives a standard Crank 

Nicholson scheme, which is second order accurate in time 0(t
2
). 

 

An implicit fractional step method can be simply derived by splitting Eq. (2-21) as 

follows: 
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� 3)6∗,vw� − )6vE� + ��*6  -)6)7.vwx5 + �
vw��*6 − �867vwx�*7 −  ��6vwx
− 12  �ℎG7 ��*7  3)7vwx �)6vwx�*7 +  m6vwx5 = 0 

(2-22) 

 )6vw� =  )6∗,vw� − E�� 3�
vw��*6 − �
v�*6 5  

 

On the other hand, substituting the last equation above into Eq. (2-9) and after some 

algebra leads to the following alternative mass balance equation 

 

 � �)6∗�*6 −  E� �0�*6�*7 �
vw� − 
v� +  U ]6
h

6Y�
��*6  3�
vw��*6 +  n6vw�5 = 0 (2-23) 

 

The weighted residual form of the above equations can be written as follows: 

 

 

` A6� 
z 3)6∗,vw� − )6v

Δ� +  )7∗,vwx ��*7  )6∗,vwx5 cΩ

+  ` � �A6�*7
 

z 3�)6∗,vwx∂*j − E67
v5 cΩ −  ` A6� 
z �6vwxcΩ

−  ` A6 
Γ{ �6vwxcΓ

+  ` ℎD2 � �A6�*D
 

z 3)7∗,vwx �)6∗,vwx∂*j + m6v5 cΩ = 0 
(2-24) 

 

` f z 3� �)6∗∂*6 −  Δ� �0�*6�*7  �
vw� − 
v�5 cΩ
+  ` ]6 �f�*6

 
z 3�
 vw�∂*V +  n6vw�5 cΩ = 0 

 

 ` A6 
z })6vw� − )6∗ + Δ��  3�
vw��*6 − �
v�*6 5~ cΩ = 0         no sum in =  

 

At this point, it is important to introduce the associated matrix structure corresponding 

to the variational discrete FEM form of Eq. (2-24): 

 

 
� 1E� ��vw� −  � 1E� �v +  �-��vwx.��vwx +  ����vwx +  �0� − ��v+  �Γ{! = � 

 

 �E�� + �����vw� +  ���Π + ����vw� = E� ��v  

 � 1E� �vw� −  � 1E� ��vw� − ��vw� −  ��v = 0 
(2-25) 

 @�vw� + �� = 0  

 ��vw� + �Π = 0  

 

Where U, P are the vectors of the nodal velocity and pressure fields, T is the vector of 

prescribed tractions and Π, C the vectors of convective and pressure gradient 
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projections. Terms denoted by over-bar identify the intermediate velocity obtained from 

the fractional momentum equation. 

 

The system of equations above includes an error due to the splitting of the momentum 

equation. This error can be eliminated by considering the analogous system of equations 

 

 
� 1E� �6w�vw� −  � 1E� �v +  �-�6vwx.�6w�vwx + ���6w�vwx + �0�6− ��6vw� +  �r{! = � 

 

 E����6w�vw� − �6vw�� + ����6w�vw� + ���Π + ���6w�vw� = 0 (2-26) 

 @�6w�vw� + ��6w� = 0  

 ��6w�vw� + �Π6w� = 0  

 

Where i is the iteration counter of the monolithic scheme. Basically, in this final 

formulation, the convergence of the resulting monolithic uncoupled scheme is enforced 

by the first term of the second equation of Eq. (2-26) (see Soto 2001).  

 

2.2.6 Compressible flows 

In the previous sections the basics of the incompressible flow solver implemented in 

Tdyn has been introduced. The extension of that algorithm to compressible flows is 

straightforward.  

Eq. (2-23) can be easily modified to take into account the compressibility of the flow. 

The resulting equation is (see M. Vázquez, 1999) 

 

 

� �)6∗�*6 + �E� �
vw� −  
v� −  E� �0�*6�*6 �
vw� − 
v�
+  U ]6

h
6Y�

��*6 3�
vw��*6 +  n6vw�5 = � 

(2-27) 

 

In the above equation the terms α and f depend on the compressibility law used. 

 

 

2.3 Turbulence solvers 

At high Reynolds numbers the flow will certainly be turbulent, and the resulting 

fluctuations in velocities need to be taken into account in the calculations.  A process 

known as Reynolds averaging [3] is applied to the governing equations whereby the 

velocities, ui are split into mean and a fluctuating component, where the fluctuating 

component, ui’, is defined by: 

 

 )6 =  )�6 +  )6� (2-28) 

 

In the expression above: 
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 )�6�*, �� = 1! ` )6�*, � + ]�c]�/0
–�/0   (2-29) 

 

This leads to extra terms in the governing equations that can be written as a function of 

‘Reynolds stresses’ tensor, defined in Cartesian coordinates as: 

 

 ]67� =  − �)��)���������  (2-30) 

 

Since the process of Reynolds averaging has introduced extra terms into the governing 

equations, we need extra information to solve the system of equations. To relate these 

terms to the other flow variables, a model of the turbulence is required. A large number 

of turbulence models exist of varying complexity, from the simple algebraic models to 

those based on two partial differential equations.  The more complex models have 

increased accuracy at the expense of longer computational time. It is therefore important 

to use the simplest model that gives satisfactory results.  

 

Several turbulence models as Smagorinsky, k, k-, k-, k-kt and Spalart Allmaras have 

been implemented in Tdyn. The final form of the so-called Reynolds Averaged Navier 

Stokes Equations (RANSE) using these models is: 

 

 FG6 − ℎG72 �FG6�*7 = 0           on Ω, =, > = 1,2,3. No sum in i (2-31) 

 

 FI − ℎI72 �FI�*7 = 0           on Ω, > = 1,2,3. (2-32) 

 

Where: 

 

 
FG6 = � a�)6�� + �-)6)7.�*7 b + �
�*6 − ��*7 a�� + ��� �)6�*7 b −  ��6 
 (2-33) 

 FI = � �)6�*6   

 

being T the so-called eddy viscosity. 

 

The theory behind the above mentioned models may be found in the references, but a 

basic outline of the three most representative models is given below. 

 

2.3.1 Zero equation (algebraic) model: the Smagorinsky model 

Zero equation models are the most basic turbulence models. They assume that the 

turbulence is generated and dissipated in the same place, and so neglect the diffusion 

and convection of the turbulence. They are based on the idea of turbulent viscosity, and 

prescribe a turbulence viscosity, t, either by means of empirical equations or 

experiment. 
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The Smagorinsky turbulence model is based on the idea of large eddy simulations 

(LES) in which the coherent large-scale structures are modelled directly within the 

computational mesh, whilst the small scales are modelled with the concept of eddy 

viscosity [4]. The Reynolds stress is written in terms of the turbulence kinetic energy, k, 

and eddy viscosity as: 

 

 )��)�������� = 23 �E67 −  2ALB67 (2-34) 

 

where 

 

 B = 12 (∇ · )� +  -∇ · )�./�
 (2-35) 

 

Smagorinsky proposed that the eddy viscosity depends on the mesh density and velocity 

gradients, and suggested the following expression: 

 

 AL = �L� = �ℎ�0�B67B67 (2-36) 

 

where T is the kinematic eddy viscosity, C is a constant of the order of 0.001, and h
e
 is 

the element size. 

 

2.3.2 One-equation models: the kinetic energy model (k-model) 

One-equation models attempt to model turbulent transport, by developing a differential 

equation for the transport of one of turbulent quantities.  In the kinetic energy model, 

the velocity scale of the turbulence is taken as the square root of the turbulence kinetic 

energy, k. Kolmogorov and Prandtl independently suggested the following relationship 

between the eddy viscosity, this velocity scale, k , and length scale, L: 

 

 AL = ��√�� (2-37) 

 

where 

 

 � = 12 )�0 = 12 )�0 +  4�0 +  u�0 (2-38) 

 

and CD is an empirical constant, usually taken as 1.0. 

 

Manipulation of the Reynolds and momentum equations leads to a differential equation 

for k [1]. The only gap in this analysis is that left by the length scale, L. This has to be 

specified either from experiment, or empirical equation. In the analysis used here, it has 

been specified as 1% of the smallest mesh size.  Clearly this is the largest downfall of 

the analysis, and many consider it insufficiently accurate [3]. However, it is more 

accurate than the zero-equation models and less computationally expensive than the 

more accurate 2-equation models, and so it can be a good compromise between 

computational expense and accuracy, depending on the problem. 
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2.3.3 Two-equation models: the k- model 

In order to increase the accuracy of our turbulence modelling, it is therefore necessary 

to develop a second differential transport equation to provide a complete system of 

closed equations without the need for empirical relationships. The k- turbulence model 

develops two such differential transport equations: one for the turbulence kinetic 

energy, k, and a second for the turbulent dissipation, .  As for the k-model, the k- 

model relies on the Prandtl-Kolmogorov expression for the eddy viscosity above.  From 

dimensional arguments, the turbulent dissipation, can be written in terms of the 

turbulence kinetic energy and the turbulence length scale, and the eddy viscosity written 

in terms of k and  

 

 B = �� �2/0�  

 (2-39) 

 AL = �� �0B   

 

Where C and C are empirical constants, and are both taken to have a value of 0.09. 

In a similar way to that of the k-model, differential transport equations can be 

formulated for k and  [3], thus closing the system of equations, without having to 

empirically define any of the turbulent quantities. 

 

Since this method directly models the transport of all of the turbulent quantities, it is the 

most accurate.  However, it involves solving 2 differential equations and is so the most 

computationally expensive. It is therefore necessary to evaluate the importance of 

turbulence in the problem before a model is selected. In many cases the easiest way to 

do this may be by trying several methods and using the simplest which gives the most 

accurate results.  If turbulence is a relatively small feature of the flow then it is not 

necessary to waste computational expense by modelling it with a 2-equation model. At 

the same time, a zero-equation model would inadequately model a problem with large 

areas of turbulence, and in many cases this will lead to instabilities in the simulation. 

 

2.3.4 Implicit LES turbulence model 

In recent years a significant progress has been carried out in the development of new 

turbulence models based on the fact that not the entire range of scales of the flow is 

interesting for the majority of engineering applications. In this type of applications 

information contained in "the large scales" of the flow is enough to analyze magnitudes 

of interest as velocity, temperature ... Therefore, the idea that the global flow behaviour 

can be correctly approximated without the necessity to approximate the smaller scales 

correctly, is seen by many authors as a possible great advance in the modelling of 

turbulence. This fact has originated the design of turbulence models that describe the 

interaction of small scales with large scales. These models are commonly known as 

Large Eddy Simulation models (LES). 

 



 Tdyn Theory Manual  

 - 16 - 

Numerous applications have shown that an extension of the FIC method allows to 

model low and high Reynolds number flows. In the standard large eddy simulation, a 

filtering process is applied to the Navier Stokes Eq. (2-6). After the filtering, a new set 

of equations are obtained, variables of this new set of equations are the filtered 

velocities or also called large scale velocities.  As a consequence of the filtering process 

a new term called the subgrid scale tensor appears into the momentum equation. The 

subgrid scale tensor is defined in function of the large scale velocities and the subscale 

velocities too. Then it is necessary to model this term in function only of the large scale 

velocities. Several models exist for the subgrid scale tensor, but basically all of them 

propose an explicit description of the subgrid scale, an analytic expression in term of 

large scale velocities. In conclusion, all of these models define the subgrid scale tensor 

as a new nonlinear viscous term. 

 

It is our understanding that the stabilized FIC formulation, with an adequate evaluation 

of the characteristic lengths introduces the same effects of a LES model without giving 

an explicit expression of the subgrid scale tensor. All the effects related to turbulence 

modelling are included into the non-linear stabilization parameters. 

 

2.3.5 Computation of the characteristic lengths 

The computation of the stabilization parameters is a crucial issue as they affect both the 

stability and accuracy of the numerical solution. The different procedures to compute 

the stabilization parameters are typically based on the study of simplified forms of the 

stabilized equations. Contributions to this topic are reported in (Oñate 1998 and García 

Espinosa 2005). Despite the relevance of the problem there still lacks a general method 

to compute the stabilization parameters for all the range of flow situations. 

 

 
Figure 2 Decomposition of the velocity for characteristic length evaluation 

 

The application of the FIC/FEM formulation to convection-diffusion problems with 

sharp arbitrary gradients has shown that the stabilizing FIC terms can accurately capture 

the high gradient zones in the vicinity of the domain edges (boundary layers) as well as 

the sharp gradients appearing randomly in the interior of the domain (Oñate 1998). The 

FIC/FEM thus reproduces the best features of both, the so called transverse (cross-wind) 

dissipation or shock capturing methods. 

 

The approach proposed in this work is based on a standard decomposition of the 

characteristic lengths for every component of the momentum equation as 
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 ℎ6 = � �|�| +  � ∇)6|∇)6| (2-40) 

 

Being α the projection of the characteristic length component in the direction of the 

velocity and β the projection in the direction of the gradient of every velocity 

component. The decomposition defined by Eq. 40 can be demonstrated to be unique if 

the characteristic lengths are understood as tensors written in a system of coordinates 

aligned with the principal curvature directions of the solution. Obviously, Eq. (2-40) is a 

simplification of that approach. However, it can be easily demonstrated that the 

variational discrete FEM form of the resulting momentum equations are equivalent 

using one or the other approach. 

 

Then, the characteristic lengths are calculated as follows 

 

 � = �coth ¢N − 1¢N� )7£7  ,    ¢N = )7£72�  (2-41) 

 

Where lj are the maximum projections of the element on every coordinate axis (see 

Figure 3). 

 

 
Figure 3 Calculation of li in a triangular element 

and 

 

 
� =  3m¤�ℎ ¢67 − 1¢675 £∇NH  ,    ¢67 = )6 ∇)6|∇)6| £¥NH2�  

 (2-42) 

 £¥NH =  ¦)6|¦)6| £6 , > = 1,2  

 

As for the length parameters d
ih  in the mass conservation equation, the simplest 

assumption d d
ih h has been taken. 

 

The overall stabilization terms introduced by the FIC formulation above presented have 

the intrinsic capacity to ensure physically sound numerical solutions for a wide 

spectrum of Reynolds numbers without the need of introducing additional turbulence 

modelling terms. 
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2.4 Flow through porous media 

The incompressible Navier-Stokes quations, in a given domain  and time interval (0,t) 

is given by Eq.(2-1). In the case of solids, small velocities can be considered and the 

term �) · ∇�) can be neglected. Therefore, assuming and incompressible flow (constant 

density) in a certain domain  and considering the mass conservation equation, the 

Navier-Stokes equations can be written as follows: 

 

 � �)�� − �∇0) + ∇
 = � on Ωx�0, �� (2-43) 

 ∇ · ) = 0 on Ωx�0, ��  

 

The general form of the Navier-Stokes equation is valid for the flow inside pores of a 

porous media, but its solution cannot be generalized to describe the flow in porous 

region. Therefore, the general form of the Navier-Stokes equation must be modified to 

describe the flow through porous media. To this aim, Darcy's law is used to describe the 

linear relation between the velocity ) and the gradient of pressure 
 within the porous 

media. It defines the permeability resistance of the flow in a porous media as: 

 

 ∇
 = −��) on Ω§x�0, �� (2-44) 

 

where Ω§ is the porous domain, �is the Darcy's law resistance matrix and ) the velocity 

vector. In the case of considering an homogeneous porous media, � is a diagonal matrix 

with coefficients 1/� , being � the permeability coefficient. 

 

As usual, the Reynolds number is defined as: 

 

 Re = ����   (2-45) 

 

being �and � a characteristic velocity and a characteristic length scale, respectively. In 

order to characterize the inertial effects, it is possible to define the Reynolds number 

associated to the pores as: 

 

 Re§ = ��E�   (2-46) 

 

where E is the characteristic pore size. 

 

Whereas Darcy's law is reliable for values of Re§ < 1, for larger values of Re§ it is 

necessary to consider a more general model, which accounts also for the inertial effects, 

in the form: 

 

 ∇
 = − ���) + 12 ��)|)|� on Ω§x�0, �� (2-47) 

 

where � is the inertial resistance matrix. 
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The modified Navier-Stokes equation in the whole domain results from considering the 

two source terms associated to the resistance induced by the porous medium (linear 

Darcy and inertial loss term). Hence, these source terms are added to the standard fluid 

flow momentum equation as follows: 

 

 � �)�� − �∇0) + ∇
 − ��) − 12 ��)|)| = 0 on Ωx�0, �� (2-48) 

 

Again, considering an homogeneous porous media, �  is a diagonal matrix with 

coefficients 1/�  and �  is also a diagonal matrix. Therefore, a modified Darcy's 

resistance matrix should be used in Tdyn as follows: 

 

 � �)�� − �∇0) + ∇
 = ��∗) on Ωx�0, �� (2-49) 

 �∗ = � + 12� ��|)|«   

 

being « the identity matrix. 

 

It should be noted that in laminar flows through porous media, the pressure 
  is 

proportional to the velocity ), and � can be considered zero ��∗ = ��. Therefore, the 

Navier-Stokes momentum equation can be rewritten as: 

 

 � �)�� − �∇0) + ∇
 = −��) on Ωx�0, �� (2-50) 

 

Note that this momentum equation is solved by Tdyn in the case of solids, where the �) · ∇�)  term vanishes due to small velocities. In the case that �) · ∇�)  cannot be 

neglected in the modelization (i.e. high velocities), then Tdyn should solve the 

followimg momentum equation within a fluid instead of a solid: 

 

 � ��)�� + �) · ∇�)� − �∇0) + ∇
 = −��) on Ωx�0, �� (2-51) 
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3. OVERLAPPING DOMAIN DECOMPOSITION 

LEVEL SET (FSURF MODULE) 

This section introduces one of the algorithms implemented in Tdyn for the analysis of 

free surface flows. The main innovation of this method is the application of domain 

decomposition concept in the statement of the problem, in order to increase accuracy in 

the capture of free surface as well as in the resolution of governing equations in the 

interface between the two fluids. Free surface capturing is based on the solution of a 

level set equation, while Navier Stokes equations are solved using the iterative 

monolithic predictor-corrector algorithm presented above, where the correction step is 

based on the imposition of the divergence free condition in the velocity field by means 

of the solution of a scalar equation for the pressure. 

 

3.1 Governing equations 

The velocity and pressure fields of two incompressible and immiscible fluids moving in 

the domain Ω  R
d
(d=2,3) can be described by the incompressible Navier Stokes 

equations for multiphase flows, also known as non-homogeneous incompressible Navier 

Stokes equations: 

 

 

���� + ��*7 ��)� =  0 

 

 

 

��)6�� + ��*7 -�)6)7.  + �
�*6 − �]67�*7 = ��6 
 

(3-1) 

 
�)6�*7 = 0  

 

Where 1 ≤ =, > ≤ c, � is the fluid density field, )6 is the ith component of the velocity 

field ) in the global reference system *6 , 
 is the pressure field and ] is the viscous 

stress tensor defined by  

 

 ]67 = ���6)7 +  �7)6� (3-2) 

 

where � is the dynamic viscosity. 

 

Let Ω� = ­* ∈ Ω |* ∈ �£)=c1}  be the part of the domain Ω  occupied by the fluid 

number 1 and  let Ω0 = ­* ∈ Ω |* ∈ �£)=c2} be the part of the domain Ω occupied by 

fluid number 2. Therefore Ω�, Ω0  are two disjoint subdomains of Ω . Therefore (see 

Figure 4) 

 

 Ω = =J��Ω� ∩ Ω0������������ (3-3) 
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where ‘int’ denotes the topological interior and the over bar indicates the topological 

adherence of a given set, for more details see [18]. The system in Eq. (3-1) must be 

completed with the necessary initial and boundary conditions, as shown below. 

It is usual in the literature to consider that the first equation in Eq. (3-1) is equivalent to 

impose a divergence free velocity field, since the density is taken as a constant. 

However, in the case of multiphase incompressible flows, density cannot be consider 

constant in Ω × �0, !�. Actually, it is possible to define �, � fields as follows: 

 

 �, � =  ±��, ��      * ∈  Ω��0, �0      * ∈  Ω0 � (3-4) 

 

Let Ψ ∶ Ω × �0, !� → µ be a function (named Level Set function) defined as follows: 

 

 Ψ �*, �� =  ¶c�*, ��        * ∈  Ω�0              * ∈ Γ−c�*, ��    * ∈  Ω0
� (3-5) 

 

Where c�*, �� is the distance to the interface between the two fluids, denoted by Γ, of 

the point * in the time instant �. From the above definition it is trivially obtained that: 

 

 Γ = ­ * ∈ Ω |Ψ�*,·� =  0 } (3-6) 

  

Since the level set 0 identifies the free surface between the two fluids, the following 

relations can be obtained: 

 

 J�*, �� = ∇ Ψ�|�+,L� ; ¸�*, �� = ∇ · �J�*, ��� (3-7) 

 

Where J is the normal vector to the interface Γ, oriented from fluid 1 to fluid 2 and ¸ is 

the curvature of the free surface. In order to obtain the above relations it has been 

assumed that function Ψ fulfils:  

 

 |∇Ψ| = 1           ∀ �*, �� ∈ Ω × �0, !� (3-8) 

 

Therefore, it is possible to redefine density and viscosity as follows: 

 

Figure 4 Domain decomposition 
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 �, � =  ±��, ��  Ψ > 0�0, �0  Ψ < 0� (3-9) 

 

Let us write the density fields in terms of the level set function Ψ as 

 

 ��*, �� = �-Ψ�*, ��.  ∀ �*, �� ∈ Ω × �0, !� (3-10) 

 

Then, density derivatives can be written as  

 

 
���� = ���» �Ψ�� ,    ���*6 = ���» �»�*6 (3-11) 

 

Inserting the above relation into the first line of Eq. (3-1) gives 

 

 

���� + ��*6  ��)6� =  ���� +  )6 ���*6 =  ���Ψ �Ψ�� +  ���Ψ )6 �Ψ�*6=  ���Ψ d�Ψ�� +  )6 �Ψ�*6e = 0 

(3-12) 

 

which gives as a result that the multiphase Navier Stokes problem is equivalent to solve 

the following system of equations: 

 

 

��)6�� + ��*7 -�)6)7. + �
�*6 − �]67�*7 = ��6 
 (3-13) 

 
�)6�*6 = 0  

 

coupled with the equation 

 

 
�Ψ�� +  )6 �Ψ�*6 = 0 (3-14) 

 

Eq. (3-14) defines the transport of the level set function due to the velocity field 

obtained by solving Eq. (3-13). 

As a conclusion, the free surface capturing problem can be described by the above 

equations. In this formulation, the interface between the two fluids is defined by the 

level 0 of Ψ.  

 

Denoting prescribed values by an over-bar, the boundary conditions to be considered for 

the above presented problem are 

 

 
) =  )�      on Γ¼ 

 
 

 

 =  
̅, J7]67 = �6̅       on Γ§ 

 (3-15) 

 )7J7 =  )�v  ,    �J7]67¾6 =  ��̅J7]6786 =  �0̅ ¿    on Γ�  
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Where the boundary �Ω of the domain Ω has been split in three disjoint sets: ΓN, ΓM 

where the Dirichlet and Neumann boundary conditions are imposed and ΓÀ where the 

Robin conditions for the velocity are set. In the above, vectors ¾, 8  span the space 

tangent to ΓÀ. In a similar way, the boundary conditions for Eq. (3-14) are defined 

 

 Ψ =  Ψ�    on ΓN (3-16) 

 

Finally, the initial conditions of the problem are 

 

 u = u#    on Ω,    Ψ = Ψ#    on Ω (3-17) 

 

Where Γ# = ­* ∈ Ω |Ψ# �*� = 0} defines the initial position of the free surface between 

the two fluids. 

 

3.2 How to calculate a signed distance to the 

interface 

Based on flow properties as density or viscosity, we can calculate an initial guess for Ψ 

as follows 

 

 Ψ�*, �� =  Á1      =� ��*, �� =  ��0     =� * ∈ Γ���−1   =� ��*, �� =  �0
� (3-18) 

 

Clearly, the level set function obtained from Eq. (3-18) is not a signed distance to Γ. We 

need to reinitiate Ψ  in order to guarantee that Ψ  fulfils the definition. We use a 

technique based on the following property to reinitiate the level set function as a signed 

distance to Γ. If Ψ is a signed distance function to Γ then, 

 

 ‖∇Ψ‖ = 1    ∀ �*, �� ∈ Ω × �0, !] (3-19) 

 

where ‖·‖ denotes the Euclidian norm in ℝI. 

 

We use Eq. (3-19) to recalculate Ψ. In case that Eq. (3-19) is not satisfied, then 

 

 1 − ‖¦»‖ = F (3-20) 

 

The residual r in Eq. (3-20) can be understood as the time derivate of Ψ with respect to 

a pseudo-time ], i.e. 

 

 F ∶= ��Ψ (3-21) 

 

Then, the stationary solutions of Eq. (3-21) (i.e. when ��Ψ = 0) satisfy Eq. (3-19).  In 

summary, for a given time � ∈ [0, !], we calculate Ψ as the stationary solution of  the 

following hyperbolic problem. 
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 ��Ψ + ‖¦»‖ = 1    on Ω   

 Ψ�] = 0� = Ψ�·, �� (3-22) 

 Ψ�*, ]� =  0    ∀ * ∈  Γ���  

 

The problem stated in Eq. (3-22) can be rewritten in a more convenient manner as 

 

 ��Ψ + �Æ · ∇�Ψ = sign�Ψ�;     Æ = sign�Ψ� ∇Ψ‖¦»‖ (3-23) 

 

Since the level set values identify the free surface between the two fluids, the following 

relations can be obtained: 

 

 ��", �� = ∇Ψ�|+,L ;  ¸�", �� = ∇ · ���", ��� (3-24) 

 

where � is the normal vector to the interface Γ, oriented from fluid 2 to fluid 1 and ¸ is 

the local curvature of the interface. 

 

From equation Eq. (3-23) it can be easily shown that the reinitialization process begins 

from the interface and it propagates to the whole domain. This property is attractive 

from the computational point of view, since we are only interested in accurate values of Ψ in the region close to the interface. Then we only need to reach the steady state 

solution of Eq. (3-23) in a narrow band close to the interface as proposed in [13]. The 

reinitialization algorithm used in this work has been optimized using the concept of 

nodal levels described next. 

 

Given a level set distributionΨ, for every time step � one can assign a level £6 to the 

node "6 based on the following rules: 

 

 A nodal point i of coordinates "6 belongs to the level £6 = 1, if Ψ�"6, �� ≥ 0, and it is 

connected to at least one node j with »-"7 , �. < 0 

 A nodal point i of coordinates "6 belongs to the level £6 =  −1, if Ψ�"6, �� < 0, and it is 

connected to at least one node j with »-"7 , �. ≥ 0 

 A nodal point i of coordinates "6 belongs to the level £6 > 1, if Ψ�"6, �� > 0, and it is 

connected to at least one node of level £6_� 

 A nodal point i of coordinates "6 belongs to the level £6 < −1, if Ψ�"6, �� < 0, and it is 

connected to at least one node of level £6w� 

 

Once the levels have been assigned to the mesh points, the reinitialization is performed 

in a narrow band of n levels around the interface. Eq. (3-23) is solved using a forward 

Euler scheme until the steady state in the n levels is achieved. k iterations with k > n are 

performed in such a way that for every iteration i = 1,…,k. The iterations are carried out 

only for those nodes j of the mesh with |lj| ≤ i. 

Due to the evolution of the interface defined by Eq. (3-14), the level set function does 

not fulfil Eq. (3-19) after some time. It is therefore recommended to apply the 

reinitialization scheme described above at every time step. 
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3.3 Interfacial boundary conditions 

At a moving interface the jump condition applies. For immiscible fluids we can write: 

 

 
[� · �É · ��] = ¢¸       on Γ[Ê · �É · ��] = 0          on Γ (3-25) 

where ¢ is the coefficient of surface tension (a constant of the problem), Ê is any unit 

vector tangent to the interface and [·] defines the jump across the interface. 

 

 [A] = Ì� −  Ì0 (3-26) 

 

Taking into account that É6 =  −
Í + �6�∇� + ∇���    = = 1,2  and using taking into 

account that · � = 0 , the second equation in Eq. 67 yields 

 

 Î · [��� −  �0��∇� + ∇��� · �] =  0 (3-27) 

 

From Eq. (3-27) we can conclude that ��� −  �0��∇� + ∇��� · � ∈ 〈8〉Ñ, where 〈Ò〉Ñ,  

denotes the orthogonal subspace to Ò. Then it is clear that 

 

 ��� −  �0��∇� + ∇��� · � = Ó�,     Ó ∈ �
Ôm�Õ� −  Õ0� (3-28) 

 

Integrating over any closed surface �� containing Γ in both sides of Eq. (3-28) yields 

 

 `��� −  �0�� · �∇� + ∇��� 
Ö =  ` Ó� 

Ö  (3-29) 

 

Applying the Gauss theorem to the right hand side of Eq. (3-29) we can deduce that Ó = 0 or equivalently 

 

 � · �∇� + ∇���     ¤J Γ (3-30) 

 

Introducing Eq. (3-30) into the first condition in Eq. (3-25) the following equivalent 

condition is obtained: 

 

 
�� = 
0� + ¢¸� (3-31) 

 

This form of the jump condition is very useful in the development of the method 

presented in the following sections. 

In the classical level set formulation for multiphase flow problems [15] the jump 

condition Eq. (3-25) can be introduced into the momentum equation by adding an 

additional source term, i.e. 

 

 
∂×���� + ∇���⨂�� −  ∇É = �ÙÚÙ Û = Ù + ¢¸�E�Γ�  (3-32) 

 

Where E�Γ� is a Dirac’s delta function on Γ. Since the properties of the fluids change 

discontinuously across the interface, the direct solution of Eq. (3-32) has important 

numerical drawbacks: inaccurate resolution of the pressure at the interface, fluid mass 
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losses, inaccurate interface location, etc. A common approach to overcome these 

difficulties is to smooth the discontinuous transition of the flow properties and the 

Dirac’s delta functions across the interface using of a smoothed Heaviside function. 

This function is usually expressed as: 

 

 Ü��Ψ� =  Ý 0 Ψ <  −B12 d1 + »B + 1n 8=J �n»B �e |Ψ| ≤ B1 Ψ >  B � (3-33) 

 

where 2B is the thickness of the transition area. Then a property Þ is approximated as 

 

 Þ�ß� =  Þ� + �Þ� − Þ0�Ü��ß� (3-34) 

 

and a Dirac’s delta function as 

 

 E�Γ� =  càÜ� (3-35) 

 

This approach also presents several deficiencies: the accuracy of the results depends on 

the ad hoc thickness of the transition area 2B , the jump condition is not properly 

captured, the interface propagation velocity is not correctly calculated, etc. 

 

Other schemes, such as the Ghost Cell method or lagrangian methods as the Particle 

FEM Method, attempt to overcome the problem of properties smoothing at the interface 

region. However, these methods have several drawbacks, such us limitations of 

conservative and convergence properties in some cases or an increase of the 

computational effort. As a conclusion, a method able to deal with a discontinuous 

transition of properties across the interface, the jump interface condition and 

computationally affordable for large models is required. 

 

The overlapping domain decomposition method described in the following sections has 

been developed to overcome these difficulties. 

 

3.4 Stabilized FIC-FEM formulation 

The stabilized FIC form of the governing differential equations Eq. (3-13) and Eq. (3-

14) is written as 

 

 r[− 12 �h[ · ∇�r[ = 0,   rT− 12 �hT · ∇�rT = 0,   rà− 12 �hà · ∇� = 0 (3-36) 

 

The boundary conditions for the stabilized FIC problem are written as 

 

 
� = ��     on Γá 

 
 

 
� · É − 12  � · âG · ãG = ä̅      on åh 
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� · � = ��v,     � · É · �− 12 � · âG · ãG · � = ä̅�     on Γ  

 

(3-37) 

 
� · É · Ê− 12 � · âG · ãG · Ê = ä̅0 

 

 

 Ψ =  Ψ�     on Γ6væ�L  

 

The underlined terms in Eq. (3-36) and Eq. (3-37) introduce the necessary stabilization 

for the numerical solution of the Navier Stokes problem [2], [4], [6]. 

 

Note that terms ãG, ãI and ãà denote the residuals of Eq. (3-13) and Eq. (3-14), i.e. 

 

 ãG ∶=  �L���� + ∇ · ���⨂�� + ∇
 − ∇ · É − �Ù  

 ãI = ∇ · � (3-38) 

 ãà ∶=  �LΨ + �� · ∇�Ψ  

 

The characteristic lengths vectors ,m dh h  and h  contain the dimensions of the finite 

space domain where the balance laws of mechanics are enforced. At the discrete level 

these dimensions are of the order of the element or grid dimension used for the 

computation. Details on obtaining the FIC stabilized equations and the recommendation 

for computing the characteristic length vectors can be found in [4]-[6]. 

 

3.5 Overlapping domain decomposition method 

To overcome the drawbacks related to the discontinuity of fluid properties across the 

interface and to impose the interfacial boundary condition we split the domain   into 

two overlapping subdomains. Based on this subdivision of the domain, we apply a 

Dirichlet-Neumann overlapping domain decomposition technique with appropriate 

boundary conditions in order to satisfying the interfacial condition. 

Let K = ⋃ �@� , �� , Θ��#ë�Y�  be a finite element partition of domain the  , where eN  are 

element nodes, eK is the element spatial domain, e are element shape functions and   

is the total number of elements in the partition. 

 

We assume that  satisfies the following approximation property: 

 

 dist í∂Ω, ∂ }î ��#ë
�Y� ~ï ≤ max�ñòñ#ó­diam�Kò�}  (3-39) 

 

for a fixed instant �, � ∈ �0, !]. Let us consider a domain decomposition of domain   

into three disjoint sub domains    3 4,t t   and  5 t  in such a way that 

 3 3

e

e

t K U  , 
5 5

e

e

K U , where 3

eK  are the elements of the finite element partition 
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 , such as  3 , 0
e

K x t  x and 5

eK  are the elements of the finite element partition 

such as  5 , 0
e

K x t  x . The geometrical domain decomposition is completed with 

 

      4 3 5\t t t      (3-40) 

 

From this partition we define the two overlapping domains: 

 

 Ω����� ≔ int-Ω2��� ∪ Ωõ ����������������������.,     Ω�0��� ≔ int-Ωõ��� ∪ Ωö ����������������������. (3-41) 

 

Some comments about the 1% - 2%  partition are given next. 

In order to simplify the notation we will omit the time dependency of domains in the 

rest of the section. 

 

Let , 1, 2i i %  be the boundary of i% , then: 

 

 
∂ΩÛV  ∩ �Ω = -�ΩÛ6  ∩ Γ�.÷øøùøøúrHû

∪ -�ΩÛ6  ∩ Γh.÷øøùøøúrHü
∪ ��ΩÛ6  ∩ Γ �÷øøùøøúrHý

 
(3-42) 

 

It has to be noted that i%  contains an additional term i%  that is not included into  . 

This term comes from the presence of an interface inside  . Since we are using a 

capturing technique, the position of the interface will not lay on mesh nodes, as usually 

happens in a tracking technique. Therefore some elements can be intersected by the 

interface. Then i%  is defined as follows: 

 

 ΓÚV = ∂Ωõ ∩ ΩÛVw�_��\þ�  (3-43) 

 

Note that i%  is not coincident with  , but the following condition is satisfied: 

 

 dist-Γ, ΓÚV. ≤ max ­diam�Kò�|Kò ⊂ Ωõ (3-44) 

 

Summarizing, we have 

 �ΩÛV = ΓVá ∪ ΓV� ∪ ΓV� ∪ ΓÚV 
 

Figure 5 is a sketch of the domain partition described above. 
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Figure 5 Geometrical domain decomposition 

 
 

We have two restrictions for the definition of the boundary condition on i% : fluid 

velocities must be compatible at the interface and the jump boundary condition Eq. (3-

25) must be satisfied on  . The domain decomposition technique chosen is of 

Dirichlet-Neumann type and it allows us to fulfil both restrictions.  

 

Let us introduce a standard notation. We denote by ix  a variable related to i% . For 

example u1 is the velocity field solution of the problem in Eq. (3-37), where the domain 

  has been replaced by 1% . 

We apply the Dirichlet conditions on  1
%  and the Neumann conditions on 2% . For the 

boundary  1
% , we make use of the compatibility of velocities at the interface: 

 

 �� = �0     on ΓÚ� (3-45) 

 

For the boundary 2%  we make use of the jump boundary condition. We are looking for 

a traction vector t%  such that: 

 

 �0 · �0 = �̃     on ΓÚ0 (3-46) 

 

and t%  must guarantee that the jump boundary condition Eq. (3-25) holds, that is to say: 

 

 
�� = 
0� + ¢¸�     on Γ (3-47) 

 

Let us write the variational problem considering the domain decomposition above 

described. 

 

Domain 1 

 

 

��� ∂×��, 
�pÛ� + 〈����� · ∇���,
〉pÛ� + �É�, ∇
�zÛ�+ 12 ���G, ���G · ∇�
�zÛ� +  ��,̅ 
�r�ü +  �� ̅
�+ � ̅�Î, 
�r�ý= 〈���,
〉pÛ�   
 

 

 
�f, ∇ · ���pÛ� + 12 �F�I, ���I · ∇�f�pÛ� = 0 

 

(3-48) 

 �� = �0     on ΓÚ�  
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Domain 2 

 

 

��0 ∂×�0,
�pÛ� + 〈�0��0 · ∇��0,
〉pÛ� +  �É0, ∇
�zÛ�+ 12 ��0G, ��0G · ∇�
�zÛ� +  ��,̅ 
�r�ü +  �� ̅
�+ � ̅�Î, 
�r�ý= 〈�0�, 
〉pÛ� 

 (3-49) 

 �f, ∇ · �0�pÛ� + 12 �F0I, ��0I · ∇�f�pÛ� = 0  

 

 

An iterative strategy between the two domains is used to reach a converged global 

solution in the whole domain  . It is expected that this global solution will satisfy both 

restrictions presented above. For this reason we define the following stop criteria: 

 

 
‖u� −  u0‖ ≤ tol¼     on Ω|� · �É� − É0� · �− ¢¸| ≤ tol�     on Γ (3-50) 

 

The global velocity solution obtained from Eq. (3-49) is used as the convective velocity 

for the transport of the level set function, i.e. 

 

 �∂×Ψ, ��p + 〈�� · ∇�Ψ, �〉p + 12 �Fà, ��à · ∇���p = 0  (3-51) 

 

Unfortunately there is not theoretical result that can ensure the convergence of this 

method. However our experience in applying this method to a wide range of problems 

involving moving interfaces has showed that the method is stable and robust. 

 

An expected property of the method is its dependency with the mesh size around the 

interface. This issue is directly related with how good is   approximated by i% , as it 

has been point out in property Eq. (3-44). A fine mesh close to the interface reduces 

significantly the amount of iterations needed to reach a converged global solution, as 

well as the accuracy of the velocities and the pressure at the interface. 

 

This methodology can be viewed as a combination of domain decomposition and level 

set techniques. This justifies the name given to the new method: ODDLS (by 

Overlapping Domain Decomposition Level Set). 

 

3.6 Discretization by the finite element method 

(FEM) 

In this section we present the final discrete system of equations associated to problem 

Eq. (3-48) and Eq. (3-49) using the FEM method. Let us consider a uniform partition of 

the time interval of analysis  0,T , with time step size t . We will denote by a 

superscript the time step at which the algorithmic solution is computed. We assume 
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1 1 2, ,n n npu u  and 2

np are known. If  0,1 , the trapezoidal rule applied to Eq. (3-48) and 

Eq. (3-49) consists of finding 1 1 1 1

1 1 2 2, , ,n n n np p   u u  as the solution of the problem 

 

 

��6vEL�6v, 
�zÛH + 〈�6v-�6vwx · ∇.�6vwx,
〉zÛH + -É6vwx, ∇
.zÛH+ 12 -�6Gvwx, -�6Gvwx · ¦.
.zÛH +  ��̃, 
�rHü+  ��̃
�+ �̃�Î, 
�rHý +  �= − 1���̃,
�rÛH =  〈�6v�, 
〉zÛH 
 

(3-52) 

 -f, ∇ · �6vwx.pÛ H + 12 -F6Ivwx, -�6Gvwx · ∇.f.zÛH = 0                            = = 1,2  

 

where  1: 1n n nx x x       and  11:
n n n

tt x x x 
  . 

 

This problem is nonlinear due to the convective term and the evolution of the free 

surface. Prior to the finite element discretization we linearize it using a Picard method, 

which leads to an Oseen problem for each iteration step. Several strategies can be 

adopted to deal with the two iterative algorithms involved in the ODDLS method: the 

overlapping domain decomposition iterative scheme and the linearization scheme 

(Picard).  In our case, for each iteration step of the linearization scheme the domain 

decomposition scheme is also updated. This simultaneous iterative strategy requires to 

complete Eq. (3-50) with a stop criteria for the Picard iteration. The same iteration index 

is used for both schemes. 

 

The adopted strategy reduces noteworthy the computational effort versus other nested 

iterative schemes. We denote by a superscript n the time step at which the algorithmic 

solution is computed and by a superscript j the iteration step of the domain 

decomposition scheme (which for a simultaneous iterative strategy will be the same as 

for the Picard iteration step). The form of the iterative scheme is as follows 

 

 

-�6v,7_�EL�6v,7, 
.pÛ H + 〈�6v-�6vwx,7_� · ∇.�6vwx,7, 
〉zÛH +  -É6vwx,7, ∇
.zÛH+ 12 -�6Gvwx,7, -�6Gvwx,7 · ∇.
.zÛH +  ��̃, 
��Hü+  ��̃
�+ �̃�Î, 
��Hý +  �= − 1��ä�, Ò��ÛH =  〈�6v,7_�
�,
〉zÛH 

 

(3-53) 

 -f, ∇ · �6vwx,7.pÛ H + 12 -F6Ivwx,7 , -�6Gvwx,7 · ∇.f.zÛH = 0                     = = 1,2  

 

The Galerkin approximation of Eq. (3-53) is straightforward and stable, thanks to the 

FIC stabilized formulation [2-7]. Equal polynomial order can be used for the 

approximation of the velocities and the pressure. Based on the finite element partition 

introduced in Eq. (3-39), let  hV V and hQ Q  be two finite dimensional conforming 

finite element spaces, being h  the maximum of the elements partition diameters.  

Let    0 0

, ,: , : 0
i i

h i h h i hV V Q q Q q
 

     v v 0% %
%  be the finite element spaces for 

the test functions. The discretized form of Eq. 94 is 
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-��,6v,7_�EL��,6v,7, 
�.pÛ H + 〈��,6v -��,6vwx,7_� · ∇.��,6vwx,7 , 
�〉zÛH+  -É�,6vwx,7, ∇
�.zÛH + 12 -��,6Gvwx,7, -��, 6Gvwx,7 · ∇.
�.zÛH+  ��̃, 
���Hü + ��̃
�+ �̃�Î, 
���Hý +  �= − 1���̃,
���ÛH=  〈��,6v,7_�
�, 
�〉zÛH 

 

 

 
-f�, ∇ · ��,6vwx,7.pÛ H + 12 -F�,6Ivwx,7 , -��,6Gvwx,7 · ∇.f�.zÛH = 0                   = = 1,2 

 

(3-54) 

 ∀�
�, f�� ∈ �� × ��  

 

Remark 

 

Updating of the level set equation is done once the convergence of the Navier-Stokes 

equations is obtained. Therefore the complete iteration loop is as follows: 

  

Step 1. Solve equations (54) in 1

~
 . 

Step 2. Solve equations (54) in 2

~
 . 

Step 3. Check convergence on pressure and velocity fields. If it is satisfied, go to Step 4, 

otherwise go to Step 1.  

Step 4. Solve equation (51). 

Step 5. Check convergence on level set equation. If it is satisfied, advance to the next time step, 

otherwise go to Step 1.  
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4. HEAT TRANSFER SOLVER (HEATRANS 

MODULE) 

4.1 Governing equations 

Tdyn solves the transient Heat Transfer Equations in a given domain :={F U 

S}(being F the fluid domain and S the solid domain) and time interval (0, t): 

 

 
��� ����� +  �� · ∇��� −  ∇ · �¸�∇�� = ��f�     =J Ω� × �0, �� 

 (4-1) 

 ��� ���� −  ∇ · �¸�∇�� =  ��f�     =J Ω� × �0, ��  

 

where  =  (x, t) denotes the temperature field, S the (constant) solid density, kS the 

solid thermal conduction tensor, kF  the fluid thermal conduction constant, CP the fluid 

specific heat constant, C the solid specific heat constant and qS and qF the solid and 

fluid, volumetric heat source distributions respectively. The above equations need to be 

combined with the following boundary conditions: 

 

 
� = ��                        in Γx × �0, �� 
 

 

 
J¸�∇� = ��             in Γ� × �0, !� 

 (4-2) 

 
J¸�∇� = ��              in Γ� × �0, !� 

 
 

 ��*, 0� =  �#�*�     in Ω × ­0}  

 

In the above equations,  :=  denotes the boundary of the domain , with n the 

normal unit vector, c is the temperature field on  (the part of the boundary of 

Dirichlet type, or prescribed temperature type), fF the prescribed heat flux on F 

(prescribed heat flux fluid boundary), fS the prescribed heat flux on S (prescribed heat 

flux solid boundary) and 0 the initial temperature field.  

 

The spatial discretization of the heat transfer equations is done by means of the finite 

element method, while for the time discretization implicit first and second order 

schemes have been implemented. 
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4.2 Stabilized heat transfer equations 

The Finite Increment Calculus theory presented above is also valid for the heat transfer 

balance equations Eq. (4-1). The stabilized form of the governing differential equations 

in 3 dimensions is written as follows: 

 

 F� − ℎ�72 �F��*7 = 0                         in �� , > = 1,2,3 
(4-3) 

 F� − ℎ�72 �F��*7 = 0                          in Ω�, > = 1,2,3  

 

Where 

 

 
F� = ��� (ÖxÖL/ −  ¸�Δ� − �f�  

 (4-4) 

 F� =  ��� ���� − ∇ · �¸�∇�� − ��f�  

 

and the new boundary conditions are: 

 

 
� =  ��      =J Γx × �0, �� 
 

 

 n¸�∇� + n ℎ�72 F� = ��      =J Γ� × �0, !� 

 (4-5) 

 n¸�¦� + n ℎ�72 F� = ��      =J Γ� × �0, !� 

 

 

 ��*, 0� =  �#�*�                 =J Ω × ­0}  

 

The stabilized Heat transfer balance equations are discretized in time in the standard 

way, to give the following equations: 

 

 
�7w�,vw� = �v − Δ���� [����� · ∇�� − ∇ · �¸�∇�� −  �f�]7,vwx 

 (4-6) 

 �7w�,vw� = �v − ���� [¦ · �¸�¦�� −  �f�]7,vwx  
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4.3 Radiation models 

Heat transfer by radiation can be taken into account within Tdyn by using one of the 

following radiation models. 

 

4.3.1 P-1 radiation model 

The energy conservation equation in terms of the temperature !, can be written as: 

 

 �m a�!�� + )7 �!�*7b − ��*7 3� · �!�*75 + F! + 
 �)7�*7 −Φ = 8� (4-7) 

 

Being m  the heat capacity, �  the thermal conductivity, F the heat reaction term, 8  the 

heat source term, and Φ the viscous dissipation function given by: 

 

 Φ = Õ:¦) (4-8) 

 

Where Õ is the viscous stress tensor of the fluid. 

The FEM formulation for the temperature equation can be written as: 

 

 

`  !"p
#vwx,D − #v
�∆� cΩ + `  !" a�7vwx,D_� ��*7 #vwx,Db cΩp+ ` ]!" a�7vwx,D_� � �*7 b a�7vwx,D_� ��*7 #vwx,Dbp cΩ

+ ` � � �*7
��*7 #vwx,DcΩp + `  ã#vwx,DcΩp= − `  8�w%w§cΩp + ` J7 &'∗ cΓr+ ` ]!" a�7vwx,D_� � �*7 b (6vwx,D_�p cΩ 

(4-9) 

 `  p (6vw�,DcΩ = `  p a�7vwx,D ��*7 #vwx,Db cΩ (4-10) 

 

Where 8�w%w§ is the total heat/sink source term, including viscous dissipation and rate 

of work for volume change, and &∗ is the heat flux at the walls. 

 

The so called P-N approximation reduces the integral equations of radiative transfer in 

media to differential equations by approximating the transfer relations with a finite set 

of moment equations. The starting point in the following equation for the variation of 

intensity of radiation =� (W/m2·sr) at a position ", along the Î direction [20]: 

 

 
c=)�cÎ = O)=)*� − �O) + �+)�=)� + �+)

4n ` =)� · ß · c-õ.
#  (4-11) 
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Where O) is the absorption coefficient and �+) is the dispersion coefficient for the given 

wave-length Ó, and the sub-index t refers to the black body. If the medium is assumed 

gray, with uniform scattering and absorption coefficients, and to scatter isotropically, 

above equation can be integrated over all Ó, to give: 

 

 
c=�cÎ = O=*� − �O + �+�=� + �+

4n ` =� · c-õ.
#  (4-12) 

 

Where the first term at the right hand side represents the gain of intensity of radiation by 

emission, the second term the losses by absorption and scattering, and the third term the 

gain by scattering into 8 direction. 

To develop the P-N method, the intensity =�  is expanded in an orthogonal series of 

spherical harmonics. The P-1 approximation is obtained by retaining the first two terms 

of the series, and gives [20]: 

 

 U �=��6��*6
2

6Y� = O-4n=*� − =��#�. (4-13) 

 

In the above equation =��#�  and =��6�  represents the zeroth and first moments of the 

radiation intensity: 

 

 =��#� = � = ` =� · c-õ.
#  (4-14) 

 =��6� = f/,6 = ` =� · 86 · c-õ.
# ,   &/ = ` =� · Î · c-õ.

#  (4-15) 

 

Where &/ is the radiative heat flux vector, and � is the incident radiation. Therefore, the 

P-1 approximation yields: 

 

 −∇ · &/ = O�� − 4n=*� � (4-16) 

 

The first term in the above equation, represents the net radiative energy supplied per 

unit volume.  

Furthermore, P-1 model gives a following additional relation between � and  &/: 
 

 &/ = − 13�O + �+� ∇� = −γ∇� (4-17) 

 

Combining above relations, the resulting transport equation for � is: 

 

 ∇ · �γ∇�� − O� = −4Ô�!õ (4-18) 

 

Where � is the Stefan-Boltzmann constant (5.672 ·10
-8

  W/m
2
·K

4
), B is the emissivity of 

the material, and the black body radiant energy has been evaluated using: 

 

 =*� = �!õn  (4-19) 
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The FEM formulation for the incident radiation equation can be written as: 

 

 

` γ
� �*7

��*7 1DcΩp + `  O1DcΩp= `  4B�-#vwx,D.õcΩp + `  f/,2 cΓr  

(4-20) 

 

Where f/,2 is the flux of the incident radiation al the walls. 

From the solution of the previous equation, the heat source term that must be added to 

the energy equation (temperature) is calculated as follows: 

 

 8� = −∇ · &/ = O� − 4B�!õ (4-21) 

 

In the implemented model the emissivity is assumed to be equal to the absorptivity O, 

and therefore above equations can be written as: 

 

 

` γ
� �*7

��*7 1DcΩp + `  O1DcΩp= `  4O�-#vwx,D.õcΩp + `  ¾2 cΓr  

(4-22) 

 8� = −∇ · &/ = O�� − 4�!õ� (4-23) 

 

The boundary condition for the incident radiation equation at the walls is given by 

(assuming an inwards normal vector �): 

 

 ¾2 = ¢∇� · � = γ∂�∂n (4-24) 

 

Where ¾2 can be calculated, assuming that walls are diffuse gray surfaces, as [21]: 

 

 ¾2 = ϵ42�2 − ϵ4� �4�!2õ − �2� (4-25) 

 

Where ϵ4 is the wall emissivity, and !2 is the wall temperature.  

 

Remark: It is usually assumed that the emissivity at the inlet and outlets is 1 (black 

body). 

 

The final FEM formulation for the incident radiation equation can be written as: 

 

 

` Γ � �*7
��*7 1DcΩp + `  O1DcΩp + ϵ42�2 − ϵ4� `  1D cΓr= `  4O�-#vwx,D.õcΩp + ϵ42�2 − ϵ4� `  4�#2õ  cΓr  

(4-26) 
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4.3.2 Surface to surface (S2S) radiation model 

The surface-to-surface (S2S) radiation model can be used to account for the radiation 

exchange in an enclosure of gray-diffuse surfaces.  This energy exchange depends on: 

 

 Surfaces size 

 Separation distance 

 Surfaces orientation 

All these factors are casted together into a geometric function called the view factor �67 

that can be computed as follows: 

 

 �67 = 1Ì6 ` ` m¤8�6 · m¤8�7nF0 E67cÌ6cÌ7
565H  (4-27) 

 

where E66 = 0, E67 = 0 when i,j are blocking surfaces and E67 = 1 when i,j are non-

blocking surfaces. 

 

The S2S model main assumptions are: 

 

 All surfaces are gray and diffuse. According to this, if a certain amount of radiation is incident 

on a surface, then a fraction is reflected, a fraction is absorbed, and a fraction is transmitted. 

 Absorption, emission and scattering of radiation by the medium can be ignored (non-

participating media) 

 Emissivity and absorptivity are independent of the radiation wave length 

 Emissivity is taken to be identical to absorptivity �B ≡ �� 

 Reflectivity is independent of the outgoing or the incoming directions 

In most applications of the S2S model the surfaces are opaque to thermal radiation (in 

the infrared spectrum). In such a situation the following relations are fulfilled: 

 

 ] = 0 

 � = B 

 � = 1 − B 

and the only independent parameter characteristic of the material is the emissivity B. 

When the S2S model is used, it is also possible to define a “partial enclosure” that 

allows disabling the view factor calculation for walls with negligible 

emission/absorption or walls that have uniform temperature. 

 

The energy flux leaving a given surface is composed of directly emitted and reflected 

energy. Hence, the total energy flux leaving the surface � (f8NL,D) has two contributions, 

one depending on its own temperature and emissivity, and another one depending on the 

energy flux incident on the surface from the surroundings. 

 

 f8NL,D =  BD · � · !Dõ + �D · f6v,D (4-28) 

 

The energy flux incident from the surroundings is given by: 
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 f6v,D = U �D7 · f8NL,7
h

7Y�  (4-29) 

 

where N is the number of surface clusters (i.e. element patches) considered. Hence, the 

total energy flux leaving a given surface can be expressed as follows: 

 

 f8NL,D =  BD · � · !Dõ + �D U �D7 · f8NL,7
h

7Y�  (4-30) 

 

 f8NL,D − �D U �D7 · f8NL,7
h

7Y� =  BD · � · !Dõ (4-31) 

 

This can be rewritten in matrix form as: 

 

 9 · : = ; (4-32) 

 

where 9 is a NxN matrix, : is the radiosity vector, and ; is the emissive power. 

In the above equations, !D and the material dependent property BD  are calculated for 

each patch by averaging the element’s values as follows: 

 

 !D = ∑ Ì� · !��
∑ Ì�� ,         BD = ∑ Ì� · B��

∑ Ì��  (4-33) 

 

Finally, equation 5 can be solved to obtain the outgoing fluxes f8NL,D . And the net heat 

fluxes can be obtained as follows: 

 

 fv�L,D = f8NL,D − f6v,D = f8NL,D − U �D7 · f8NL,7
h

7Y�  (4-34) 

 

where Eq. (3) has been used to express the incident fluxes f6v,D. 

The solution process outlined above provides the net heat flux at the element/patch 

level. This can be applied as boundary condition of the boundary value problem to be 

solved by the finite elements method after proper transformation of element/patch 

values to nodal values.  
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5. SPECIES ADVECTION SOLVER (ADVECT 

MODULE) 

5.1 Governing equations 

Tdyn solves the transient Species Advection Equations in a given fluid domain F for a 

number of different species, and time interval (0, t): 

 

 
∂=�� + �� · ∇�= + �m · = · ¾ · ∇�= − ∇ · �¸�∇=� =  f�     in Ω� × �0, �� (5-1) 

 

where  =  (x, t) denotes the concentration of species field, c the decantation 

coefficient, kS the total diffusion coefficient (including turbulent effects) and qP a 

volumetric source. The above equations need to be combined with the standard 

boundary conditions.  

 

As in the previous examples, the spatial discretization of the Species Advection 

equations has been done by means of the finite element method, while for the time 

discretization implicit first and second order schemes have been implemented. Problems 

with dominating convection are stabilized by the Finite Calculus (FIC) method, 

presented above. 
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