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1. About this Manual
This is the user's reference manual of the Tdyn CFD+HT module 
of Tdyn. This module provides an entire engineering solution for 
solving problems involving fluid and porous media flow, heat 
transfer and multi-physics. The present manual is organized in 
four sections:

An introduction, where the user can find an explanation of 
the more general aspects of the program. It is strongly 
recommended to read this section before to start using 
Tdyn CFD+HT.

A second part, named Tdyn CFD+HT Reference, that gives 
an explanation of every option available in Tdyn CFD+HT.

The third part, gives some recommendations and best 
practices for the use of Tdyn CFD+HT.

The fourth part, is only intended for experienced users, and 
gives some details about the internal operation of the Tdyn 
CFD+HT module.

In this manual, different kinds of fonts are used to help the 
users follow all the possibilities offered by the program Tdyn 
CFD+HT:

font is used for the options found in the menus, tree and 
windows.
font is used for fields found in the tree entries of 
Conditions & Initial Data, Materials, and General Data.

2. Introduction
Tdyn CFD+HT is an environment for multi physics simulation, 
using a stabilised (FIC) finite element method.

Tdyn CFD+HT includes different modules that allow to solve 
Heat Transfer in both solids and fluids, Turbulence, Advection of 
Species in fluids and solids and Free Surface (Transpiration or 
OddLevelSet method) problems using the same stabilised 
scheme mentioned above. Tdyn CFD+HT includes a complete 
environment for geometry and data definition, and post-
processing of the analysis results, based in the Custom GiD 
system.

By using Tdyn CFD+HT it is also possible to configure additional 
user defined partial differential equations (PDE) solvers in both 
fluid and solid materials and to couple them with any of the 
other problems.

Finally, it can also be used to simulate problems where mesh 
deformation (i.e. body movement) may occur.

The different analysis available in Tdyn CFD+HT are fully 
integrated and the complete environment is used as one single 
program.

A more detailed explanation of the capabilities of every Tdyn 
CFD+HT module is given next.

Fluid Flow module is able to solve incompressible or slightly 
compressible fluid flow problems, including turbulence 
effects (RANS equations). It is also able to solve porous 
media flow (Stokes) problem in solid materials. Physical 
properties used in this module can be defined in terms of 
any other variable of the problem.

Heat Transfer module is able to solve heat transfer 
problems in fluids and solids. Physical properties used in 
this module can be defined in terms of any other variable of 
the problem.

Species Advection module is able to solve species advection 
problems in fluids. It is also able to solve species diffusion 
problems in solids. This module allows to define a number 
of new species whose behaviour can be coupled among 
them or with any other variable (i.e. velocity, pressure, 
temperature, …) used in Tdyn CFD+HT. Physical properties 
used in this module can be defined in terms of any other 
variable of the problem.

PDE's solver module is able to solve user defined PDE 
problems in fluids and solids. This module allows to define 
a number of new variables (called φ-phi problems) and 
specify and solve the differential equation that governs its 
behaviour. New user-defined problems can be coupled 
among them or with any other variable (i.e. velocity, 
pressure, temperature, …) used in Tdyn CFD+HT.

Mesh Deformation module includes all the necessary 
capabilities to solve problems with mesh updating 
techniques. This module includes several mesh updating 
techniques and arbitrary Lagrangian-Eulerian (ALE) 
algorithms for solving systems of equations. Note that ALE 
techniques are only available in fluid domain problems.

Free Surface-Transpiration module is able to solve free 
surface equations, based on the transpiration technique. 
This module is specially adequate to solve naval 
hydrodynamics problems.

Free Surface-Odd Level Set module can solve free surface 
problems by means of the overlapping domain 
decomposition level set technique. This module has been 
specially designed to solve large / violent free surface 
motions.
RamSeries module features an advanced environment for 
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structural analysis, based on the Finite Element Method. 
RamSeries module includes 3D beam, shell and solid 
models, as well as a full support for nonlinear elements, 
nonlinear and linear material laws, and inelastic material 
models. RamSeries easily simulates even the largest and 
most intricate of structures. Furthermore, RamSeries 
features the latest technology for solving structural 
dynamics analyses, including contact-impact algorithms 
which permit the study of many common problems in 
engineering. As for composite materials, RamSeries allows 
to study laminated beam and shells, including the capability 
of setting predefined standard laminate sequences giving 
each ply direction, based on local or global frames of 
reference. A key feature here is the possibility of viewing 
the critical strains and stresses in each of the laminated 
material plies or tissues. RamSeries module allows to 
perform coupled analysis, ranging from thermo-
mechanical analyses to the most sophisticated fluid-
structure interaction problems.

The analysis of a problem by means of Tdyn CFD+HT consists of 
the following basic steps (see Figure 1):

Pre-processing

Creation (or importation) of the geometry to be analysed

Assignment of the material properties, boundary 
conditions and definition of general data

Mesh generation

Calculation
Post-processing

Steps involved in any FEM problem

2.1. Pre-processing

The first step for any analysis is the setting up of the problem. 
This includes the creation or importation from a CAD file of the 
problem's geometry (i.e. the control volume) the assignment of 
boundary and initial conditions, and the generation of the 
mesh. This will all be made in the PREPOST module of the Tdyn 
environment (based on the Custom GiD system).

Remarks:

A full description of the CAD preprocessing 

capabilities of the environment can be found in 
the GiD reference and user manuals (see 
Postprocessing section).

When Tdyn is run for the first time, the 'Getting Started' window 
shown below appears. It can be opened again at any moment 
by using the following command's sequence from the main 
menu of Tdyn.

Help ► Open start page

This window provides the most basic options for a new user. 
From here, a new project can be started and an already existing 
project can be opened as well. This window also provides the 
opportunity to open the 'Getting Started Tutorial' of Tdyn which 
will guide the user through the necessary steps for running a 
simple simulation. Finally, the user can also access the 
passwords registration window which is a necessary step in 
order to run non-academic problems.

Getting Started window of Tdyn. Among other options, it provides the possibility to open 
the 'Getting Started Tutorial' which is a good starting point for any new user of the program

By invoking the 'New Project ...' option the 'Start Data' window 
shown below is started. This window allows the user to 
configure the type of analysis for the problem to be simulated. 
To modify the initial configuration of the analysis, this window 
can also be opened at any moment by selecting the following 
command's sequence from the main menu. 

Data ► Start Data

The first step to configure the analysis consists on the selection 
of the simulation type to be carried out. Available options are:

Fluid Dynamics & Multi-physics

Structural Analysis

Seakeeping analysis

Multiphysics analysis

Coupled Seakeeping-Structural analysis

Thermomechanical analysis

Fluid-Structure interaction analysis
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Start Data window of Tdyn used to quickly configure the type of analysis for the problem to 
be simulated

Once the simulation type has been selected, the Start Data 
window also allows to select what capabilities of Tdyn are going 
to be used. In this way, the graphic used interface (GUI) of Tdyn 
is simplified by removing those menus and options that are 
irrelevant for the type of analysis being considered.

When setting up a new analysis for calculation with Tdyn, the 
specific simulation type and the corresponding simulation 
dimension have to be selected. This can be done at any point 
from the creation of the new project to the final definition of the 
geometry, but has to be performed before the user can proceed 
to assigning boundary conditions and other problem 
parameters.

Depending on the simulation type selected for analysis, the 
following problem elements must be specified:

If 'Structural Analysis' option is selected:

Simulation Dimension: Select the analysis dimension 
(2D Plane Strain, 2D Plane Stress or 3D).

Basic Element Type: Different element combinations 
can be chosen (i.e: Beams + Shells), or just one.

Analysis Type: Define the type of analysis to perform 
(Static or Dynamic).

Material Constitutive Model: Define the type of 
analysis to perform (Linear or Non-linear).

If 'Multi-physics Analysis Type' option is selected:

Simulation Dimension: Select the analysis dimension 
(2D Plane, 2D Axisymmetric or 3D).

Fluid: Define data concerning solver in Fluid domain.

Fluid Flow

Heat Transfer

Mesh Deformation (it is a particular case 
of Fluid Flow analysis).

Species Advection

PDE's solver

Free Surface: Odd Level Set or 
Transpiration (it is a particular case of 
Fluid Flow analysis).

Solid: Define data concerning solver in Solid domain.

Fluid Flow

Heat Transfer

Species Advection

PDE's solver

If 'Coupled Fluid-Structural Analysis' option is selected:

Simulation Dimension: Select the analysis dimension 
(2D Plane or 3D).

Structural Analysis:

Basic Element Type: Different element combinations 
can be chosen (i.e: Beams + Shells), or just one.

Analysis Type: Define the type of analysis to perform: 
Static, Dynamic.

Material Constitutive Model: Define the type of 
analysis to perform: Linear, Non-linear.

Multi-physics Analysis Type:

Fluid: Define data concerning solver in Fluid domain.

Fluid Flow

Mesh Deformation (it is a particular case 
of Fluid Flow analysis).

Solid: Define data concerning solver in Solid domain.

Heat Transfer

Gravity: Choose the direction of the gravity for problems 
with Specific Weight != 0. This vector specifies the direction 
but not the magnitude of the gravity.

Units: Choose the geometry units.
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Remarks:

Depending on the analysis preferences selected by the user some 
options are not available, these options are disabled or hidden in 
the Start Data window.

Pre-processing part of the analysis consist of the following 
steps:

Model geometry importation or generation

Conditions & Boundaries assignment

Materials definition
General problem data insertion

Solver data definition
Units definition
Mesh size assignment

Mesh Generation

The first step for any analysis is the setting up of the problem. 
This includes the creation or importation from a CAD file of the 
problem's geometry (i.e. the control volume) the assignment of 
boundary and initial conditions, and the generation of the 
mesh. This will all be made in the Tdyn CFD+HT environment 
(based on the Custom GiD system).

Remarks:

A full description of the CAD preprocessing 
capabilities of the environment can be found in 
the GiD reference and user manuals.

The Tdyn CFD+HT pre toolbar has been designed to guide the 
user during the pre-processing part of the fluid dynamics and 
multi-physics analysis. The corresponding icons and their 
associated functions are summarized in what follows:

Tdyn CFD+HT preprocessor toolbar 

Define fluid flow module data

Define fluid heat transfer module data

Define fluid species advection module data

Define fluid generic PDEs solver module data

Open mesh deformation conditions window

Define free surface (Transpiration) module data

Define free surface ODDLS module data

Open fluid materials window

Open solid materials window

Open fluid boundaries window

Open fluid dynamics and multi-physics data window

Open modules and solvers data window

2.2. Calculate
After setting up the problem, the calculation can be started by 
using the following command's sequence from the main menu:

Calculate ► Calculate window

When pressing the Start button in the Calculate Window, Tdyn 
will start the calculation. This can also be done automatically by 
using the corresponding icon.

Information about the evolution of the solution can be 
displayed by pressing the Output View button. This can also be 
done by using the corresponding toolbar icon (see Figure 
below).

Calculate icon used to start the simulation

Information icon used to check the evolution of the 
calculation at runtime

2.3. Post-processing

When the Tdyn calculation process is finished, the system 
displays the message Process...name..., started on...date...has 
finished. Then the results can be visualised by using the menu 
sequence:

Postprocess ► Start

Note that the problem must still be loaded in the pre-process 
before starting the post-process; should this not be the case we 
first have to open the problem files again. Note that the 
intermediate results can be shown at any moment of the 
process even if the calculations are not finished.

However, in the case of large simulations that require much 
computing time and RAM memory, it is advisable to quit the 
pre-processing environment while the process is running. It is 
possible to close the program while having a Tdyn process 
running (before closing, a warning window asking whether 
running processes should be killed is displayed).

Once the problem is loaded into Tdyn environment and the 
post-process is activated, the results file will be loaded into the 
post-processing part of the environment. The results it contains 
can be visualised using the various post-processing options of 
the system, like turning on and off the element sets, using 
contour fills, vectors, iso-surfaces, cuts, graphs, animations, etc. 
See the Post-process manual for further details.

It is also possible to visualize some information and graph 
evolutions concerning forces and moments on bodies, body 
movements and convergence norms. Such kind of results can 
also be accessed during the calculation and without loading the 
post-processsor. To this aim, just use the following menu 
sequences within Tdyn pre-processor:

Utilities ► Forces on boundaries

Utilities ► Forces graph

Utilities ► Motions graph

Utilities ► Norms graph

http://www.compassis.com/downloads/Manuals/CompassLIBPostprocessReference.pdf
http://www.compassis.com/downloads/Manuals/CompassLIBPostprocessReference.pdf
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3. Tdyn Reference

This chapter gives a brief explanation of every option available 
in Tdyn CFD+HT.

3.1. Item help

It is possible to obtain help for several items in the toolkit and 
windows by pressing right mouse button on them.

3.2. Fluid Dyn. & Multi-Phy. Data

Fluid Dyn. & Multi-Phy data refers to all the information 
required for performing the analysis and it does not concern 
any particular module. Fluid Dyn. & Multi-Phy data also differs 
from the previous definitions of conditions and materials 
properties, which are assigned to different entities. Some 
examples of general Fluid Dyn. & Multi-Phy data are the type of 
solution algorithm used by the solver, the value of the time 
step, convergence conditions and so on.

3.2.1. Options available in Problem section

This group of data refers to the selection of problems to be 
solved with Fluid Dynamics and Multi-physics.

Solve fluid: Select this option if you are going to solve any fluid 
problem. If this option is not selected, any defined fluid domain 
will be ignored in the solution of the problem. Several options 
exist for Solve fluid:

Solve Fluid Flow: Select this option if you are going 
to solve fluid flow (RANSE) problem. This option 
will only be available in Fluid Flow module

Solve heat transfer: Select this option to solve a heat 
transfer problem in a fluid. If this option is not 
selected, the temperature problem in fluid 
domains will be ignored in the solution process. 
This option will only be available in Heat Transfer 
module

Solve Species advection: Select this option to solve a 
species advection problem in fluid. If this option is 
not selected, the species advection problem in 
fluid domains will be ignored in the solution. This 
option will only be available in Species Advection 
module.

Solve PDEs problems: Select this option to solve any 
user defined PDE (phi variables) problem in fluid. If 
this option is not selected, the user defined PDE's 
problem in fluid domains will be ignored in the 
solution. This option will only be available in PDE's 
solver module.

Solve free surface (ODDLS): Select this option to 
solve free surface problems in fluid based on ODD 
level set. This option will only be available in 
ODDLS module.

Solve free surface (Transpiration): Select this option 
to solve a transpiration free surface problem in 

fluid. If this option is not selected, the 
transpiration free surface problem in fluid 
domains will be ignored in the solution. This 
option is only available in Transpiration module of 
3D analysis.

Solve mesh deformation: Select this option to apply 
mesh deformation algorithms and apply Arbitrary 
Lagrangian Eulerian (ALE) solvers in fluid. This 
option will only be available in Mesh Deformation 
module.

Solve comfort: Select this option to solve comfort 
problems in fluid domains. This option will only be 
available in Comfort module.

Solve solid: Select this option if you are going to solve any solid 
problem. If this option is not selected, any defined solid domain 
will be ignored in the solution of the problem. Several options 
exist for Solve solid:

Solve Solid Flow: Select this option if you are going 
to solve fluid flow problem in a solid (flow in 
porous media). This option will only be available in 
Flow in Solids module

Solve heat transfer: Select this option to solve a heat 
transfer problem in a solid. If this option is not 
selected, the temperature problem in solid 
domains will be ignored in the solution process. 
This option will only be available in Heat Transfer 
module

Solve species advection: Select this option to solve a 
species advection problem in solid. If this option is 
not selected, the species advection problem in 
solid domains will be ignored in the solution. This 
option will only be available in Species Advection 
module.

Solve PDEs Problems: Select this option to solve any 
user defined PDE (phi variables) problem in solid. 
If this option is not selected, the user defined 
PDE's problem in solid domains will be ignored in 
the solution. This option will only be available in 
PDE's solver module.

3.2.2. Options available in Analysis section

Number of Steps: Number of steps of the simulation. Total 
physical time to be simulated will be Number of Steps x Time 
increment. Recommended values to achieve steady state is:

Number of Steps ≥ 1000·dt·V/LD

where dt is the time increment and V, LD the characteristic 
velocity and length.

Time Increment: Time step of the simulation. Total physical time 
to be simulated will be Number of Steps x . The recommended 
value is:
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 dt = C·LD/V

where dt is the time increment, V, LD the characteristic velocity 
and length and 0.1 < C < 0.01.

In case a transient phenomenon of characteristic time or period 
(T) is expected, then dt can be calculated as 1/10 to 1/100 of T of 
the problem is usually more appropriate.

Remarks:

In any case, it is important to verify if the dt 
calculated with the above formulae is adequate for 
the mesh used. This can be done by evaluating a 
characteristic mesh time as: dtm = h/V, where h is 
the characteristic mesh size (usually the smallest 
element size). It is recommended the dt used in 
the calculations to be between 2·dtm < dt < 
20·dtm.

Time increment may also be defined by a global function (see 
Function Syntax section for further information). Units of the 
time step of the simulation are given in the menu next to this 
field.

Max Iterations: Maximum number of iterations of the non-linear 
algorithm for solution of the problem. Recommended values 
come from 3 to 10, depending on the value of the convergence 
norms (see Modules Data section).

Remarks:

In some cases the algorithm may not converge in 
the initial time-steps, due to the start up process, 
resulting in the appearing of a warning message 
More than...number...iterations may be necessary. If 
only the steady state is of interest, this message 
may be simply ignored, otherwise Max Iterations 
value should be increased.

Initial Steps: During first Initial Steps some controls are carried 
out in the algorithm in order to stabilise the problem during the 
start up process. It is strongly recommended to define Initial 
Steps about 10% of the Number of Steps in problems with free 
surface transpiration.

Start Up Control: if activated, during first Initial Steps the start up 
process is smoothed. This can be done by creating a adequate 
acceleration in the flow (Speed), by smoothly increasing the time 
increment (Time) or Both.

Restart: if On, the restart file is used to define the initial data. The 
Restart file taken will be ‘ProblemName.flavia.rst’. This file is 
automatically written with the rest of the results. To restart a 
case, the Number of Steps must be increased in the number of 
new steps to be run.

Remarks:

Note that the Number of Steps must be set to a 
number greater than the last step reached in the 
previous calculation. For example, if one should 
want to restart and perform a calculation of 100 
steps, and the previous calc. reached 600, the 
Num. of Steps should be set to 700.

Processor unit: it allows to choose between CPU and CPU+GPU 
processor options. If CPU mode is selected the entire calculation 

is performed in the Computer Processor Unit. On the contrary, if 
CPU+GPU mode is selected the numerical solver runs on the 
Graphical Processor Unit if this type of device is available in the 
computer being used. CPU+GPU mode tries to benefit from the 
increasing computational power of modern GPU devices in 
order to increase solver performance.

Multiprocessor mode: it allows to select the parallel execution 
mode. By default, Parallel mode is used so that the program 
automatically makes use of the maximum available number of 
logical CPU cores. If Sequential mode is used instead, the solver 
runs sequentially so that the program executes in a single 
logical processor. If the User Defined option is choosen, the 
user is allowed to select the actual number of logical CPU cores 
to be used during the calculation.

Number of CPU's: Number of CPU's is the number of processors 
to be used on a parallel computation. It must be less or equal to 
the maximum number of available processors in the current 
computer. In multi-core CPU machines, Number of CPU's actually 
refers to the total number of independent cores.

Use Hypre Solvers: it allows to activate/deactivate the use of 
Hypre' solvers. Hypre is a software library of high performance 
preconditioners and solvers for the solution of large, sparse 
linear systems of equations on parallel computers developed by 
the LLNL (Hypre's site). It has been introduced in Tdyn to 
provide the capability of running parallel jobs using the 
message passing interface (MPI) paradigm.

MPI: it allows to activate/deactivate the message passing 
interface (MPI) parallel mode. It is only available when the Hypre 
Solvers option is active. Depending on the actual architrecture 
and/or operating system of the computer, MPI execution may 
also require the installation of third party software responsible 
for the management of the parallel processes execution (see 
additional information on the CompassIS webpage).

Number of MPI nodes: when using the MPI parallel execution 
mode, this entry allows the user to especify the number of 
calculation nodes to be used for parallel execution. Based on 
this information, Tdyn will automatically perform the required 
domain decomposition before running the calculation.

Steady State solver: if On, it starts the calculation procedure for 
an automatic search of the steady state.

3.2.3. Options available in Results section

Output Step: Each Output Step time steps the results will be 
written to disk.

Remarks:

This value will control the size of the results file.

Output Start: The results will be written each Output Step time 
steps after Output Start steps.

Remarks:

This value will control the size of the results file.

Results File: Type of the results file (Binary, Binary2, ASCII or 
EnSightGold). Binary or Binary2 type should be selected in order 
to minimise the size of the results file. Binary2 must be used to 
take advantage of the CompassFEM custom postprocessor.

Fluid Flow module: Options available with Fluid Flow module 

https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
https://computation.llnl.gov/projects/hypre-scalable-linear-solvers-multigrid-methods/software
http://www.compassis.com/compass/en/Soporte
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selected.

Initial Data: Mark to write in the results file the 
initial data of the problem.

Velocity: Mark to write velocity field in the results 
file.

Velocity Stress Tensor: Mark to write velocity stress 
tensor field in the results file.

Pressure: Mark to write pressure field in the results 
file.

Pressure Gradient: Mark to write pressure field in 
the results file.

Total Pressure: Mark to write total pressure field in 
the results file (including hydrostatic component).

Density: Mark to write fluid density field in the 
results file.

Viscosity: Mark to write viscosity field in the results 
file.

Wall Law Traction: Mark to write wall stress given 
by the Law of the Wall (if exits) in the results file.

Tau Parameter: Mark to write tau parameter (local 
Courant number) field in the results file.

Eddy Viscosity: Mark to write eddy viscosity field in 
the results file.

Eddy Kinetic Energy: Mark to write eddy kinetic 
energy field in the results file.

Epsilon: Mark to write epsilon (turbulence variable) 
field in the results file.

Omega: Mark to write omega (turbulence variable) 
field in the results file.

K Tau: Mark to write kτ variable (of K_KT turbulence 
model) field in the results file.

Heat Transfer module: Options available with Heat Transfer 
module selected.

Temperature: Mark to write temperature field in 

the results file.

Temperature Gradient: Mark to write temperature 
gradient field in the results file.

Heat Flux: Mark to write heat flux through the 
boundaries.

Solid Density: Mark to write solid density field in the 
results file.

Species Advection module: Options available with Species 
Advection module selected.

Species Concentration: Mark to write species 
concentration field in the results file.

PDE's solver module: Options available with PDE's solver module 
selected.

Phi Variable: Mark to write phi variables field in the 
results file.

Mesh Deformation module: Options available with Mesh 
Deformation module selected.

Mesh Deformation: Mark to write mesh 
deformation in the results file.

ALE Velocity: also referred as Eulerian velocity. Mark 
to write the velocity given in the moving reference 
frame.

Free surface module: options available with free surface 
module.

Wave Elevation: Mark to write wave elevation field 
in the results file.

Wave Elevation Vector: Mark to write wave elevation 
vector field in the results file.

Comfort module: options available with comfort module.

PMV: Mark to write PMV index results (Predicted 
Mean Vote).

PPD: Mark to write PPD index results (Predicted 
Percentage Dissatisfied).

User defined functions module: options available to provide user 
defined results. Each custom results may be written as a 
function of already available problem variables.

Fluid Function #: Mark to write the function field 
(only evaluated in fluid domain) in the results file. 
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The function field is written in IS units in the 
analysis group USERDEF. If this file is marked, two 
new field will be available.

Name: Name of the function. The corresponding 
field is identified with this name in the post-
processing part.

Function: Insert the fluid function to be evaluated 
and written. See Function Syntax section for 
further information.

Solid Function #: Mark to write the function field 
(only evaluated in solid domain) in the results file. 
The function field is written in IS units in the 
analysis group USERDEF. If this file is marked, two 
new field will be available.

Name: Name of the function. The corresponding 
field is identified with this name in the post-
processing part.

Function: Insert the fluid function to be evaluated 
and written. See Function Syntax section for 
further information.

3.2.4. Options available in Fluid Solver section

This group of data refers to all the information required to 
define the integration scheme and solver data of the problem/s 
to be analysed in the fluid domain.

Flow Solver Model: Flow solver model used in the fluid domain. 
Available options are Incompressible, PrCompressible 
(compressible algorithm using pressure as main variable) and 
DnCompressible (compressible algorithm using density as main 
variable).

Incompressible model is adequate for those 
problems where the compressibility effects are 
small, as happens in open flows with characteristic 
Mach number below 0.4. It can handle small 
compressibility effects using the 
SlightlyIncompressible fluid model algorithm. See 
Materials section for further information. 

PrCompressible is a compressible using pressure as 
main variable. This model is suitable for most of 
the practical cases. However it can not handle 
shock waves.

DnCompressible model is the most suitable for 
those problems where compressible effects are 
quite relevant. It can even simulate shock waves.

Time Integration: Time integration scheme used in the solution 
process of the fluid problem:

Backward Euler: Implicit 1st order scheme.

Crank Nicolson : Implicit 2nd order scheme.

Solver NonSymmetric: Solver type used in the solution of the non-
symmetric linear systems of equations.

BiConjugateGradient: Biconjugate gradient solver.

StabBiConjugateGradient: Stabilised biconjugate 
gradient solver.

GMRes: Generalised minimum residual solver.

SquaredConjugateGradient: Squared conjugate 
gradient solver.

GaussSeidel: Gauss Seidel solver.

Direct: Parallel Sparse Direct Solver.

Tolerance: Tolerance used in the solution of the non-symmetric 
linear systems of equations (see Solver NonSymmetric). A value 
smaller than 1.0·10-6 is recommended.

Max. Iterations: Maximum number of iterations of the non-
symmetric linear systems of equations (see Solver NonSymmetric
).

Preconditioner: Preconditioner used in the solution of the non-
symmetric linear systems of equations (see Solver NonSymmetric
).

Remarks:

In some cases using elements with high aspect 
ratio the diagonal preconditioner may work better 
than others.

Krilov sp. dimension: Dimension of internal direct solver used in 
GMRes solver (see Solver NonSymmetric). A value greater than 20 
is recommended.

Solver Symmetric: Solver type used in the solution of the 
symmetric linear systems of equations.

BiConjugateGradient: Biconjugate gradient solver.

StabBiConjugateGradient: Stabilised biconjugate 
gradient solver.

GMRes: Generalised minimum residual solver.

SquaredConjugateGradient: Squared conjugate 
gradient solver.

GaussSeidel: Gauss Seidel solver.
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Direct: Parallel Sparse Direct Solver.

Tolerance: Tolerance used in the solution of the symmetric linear 
systems of equations (see Solver Symmetric). A value smaller 
than 1.0·10-6 is recommended.

Max. Iterations: Maximum number of iterations of the symmetric 
linear systems of equations (see Solver Symmetric).

Preconditioner: Preconditioner used in the solution of the 
symmetric linear systems of equations (see Solver Symmetric).

Remarks:
In some cases using elements with high aspect ratio the 
diagonal preconditioner may work better than others.

Krilov sp. dimension: Dimension of internal direct solver used in 
GMRes solver (see Solver Symmetric). A value greater than 20 is 
recommended.

Advection Norm: Euclidean convergence norm of the velocity, 
used for recalculating or not advective terms. A value smaller 
than 1.0·10-5 is recommended.

Steady State Norm: Euclidean norm used to detect the steady 
state. If each variable increment is smaller than this norm, the 
problem is stopped and results are written to the disk.

Increment Control: This option activates a control that limits the 
maximum admissible increment of the variables for every 
iteration. The limit is taken as ratio of the convergence norm of 
the variable. Select None to switch this control off.

3.2.5. Options available in Solid Solver section

This group of data refers to all the information required to 
define the integration scheme and solver data of the problem/s 
to be analysed in the solid domain.

Flow Solver Model: Flow solver model used in the fluid domain. 
Available options are Incompressible, PrCompressible 
(compressible algorithm using pressure as main variable) and 
DnCompressible (compressible algorithm using density as main 
variable).

Incompressible model is adequate for those 
problems where the compressibility effects are 
small, as happens in open flows with characteristic 
Mach number below 0.4. It can handle small 
compressibility effects using the 
SlightlyIncompressible fluid model algorithm. See 
Materials section for further information. See 
Materials section for further information.

PrCompressible is a compressible using pressure as 
main variable. This model is suitable for most of 
the practical cases. However it can not handle 
shock waves.

DnCompressible model is the most suitable for 
those problems where compressible effects are 
quite relevant. It can even simulate shock waves.

Time Integration: Time integration scheme used in the solution 
process of the solid problem:

Backward Euler: Implicit 1st order scheme.

Crank Nicolson : Implicit 2nd order scheme.

Solver Symmetric: Solver type used in the solution of the 

symmetric linear systems of equations.

BiConjugateGradient: Biconjugate gradient solver.

StabBiConjugateGradient: Stabilised biconjugate 
gradient solver.

GMRes: Generalised minimum residual solver.

SquaredConjugateGradient: Squared conjugate 
gradient solver.

GaussSeidel: Gauss Seidel solver.

Direct: Parallel Sparse Direct Solver.

Tolerance: Tolerance used in the solution of the symmetric linear 
systems of equations (see Solver Symmetric). A value smaller 
than 1.0·10-6 is recommended.

Max. Iterations: Maximum number of iterations of the symmetric 
linear systems of equations (see Solver Symmetric).

Preconditioner: Preconditioner used in the solution of the 
symmetric linear systems of equations (see Solver Symmetric).

Remarks:

In some cases using elements with high aspect 
ratio the diagonal preconditioner may work better 
than others.

Krilov sp. dimension: Dimension of internal direct solver used in 
GMRes solver (see Solver Symmetric). A value greater than 20 is 
recommended.

Steady State Norm: Norm used to detect the steady state. A value 
smaller than 1.0·10-5 is recommended.

Increment Control: This option activates a control that limits the 
maximum admissible increment of the variables for every 
iteration. The limit is taken as ratio of the convergence norm of 
the variable. Select None to switch this control off.

3.2.6. Options available in Other section

User Defined Integrals

Within this section of the data tree, the user can define fluid and 
solid volumetric integrals of any of the calculation variables. 
This integrals will be calculated for each time step.

Tcl data

Use Tcl External Script: If the check-box is selected, the Tcl 
extension is activated. The entry may indicate a Tcl script to be 
interpreted during execution. The Tcl script can define any of 
the standard program Tcl functions. See section Tcl Extension 
for further information about Tcl extension.

Other data

Warn. Level: If None, warning messages are not shown during 
the calculation process. Other possibilities are Few, Some or All
.

Multiple Runs & Additional Steps: This options allows the user to 
create a vector of factors, which will affect the velocity field each 
additional run (which will run for # additional_steps). For 
example, if multiple_runs=[1.0 1.51.6] and additional_steps=100, 



Compass - http://www.compassis.com
10

Tdyn CFD+HT reference manual

then, when the first run finishes, a new run will start, for 100 
steps, with the velocity field multiplied by 1.5. Again, when it 
finishes, the resulting vel. field will by multiplied by 1.6, and the 
calculation will run for another 100 steps.

Mesh Refinement Type: This option tells Tdyn to calculate some 
mesh correction parameters, while the analysis is running. 
These corrections are written in a file (background mesh, *.bgm), 
and the mesher will read this file, modifying the mesh assigned 
sizes, in order to improve it.
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3.3. Modules Data
Modules data refers to all the specific information needed to 
performance a particular Tdyn CFD+HT analysis. See 
Introduction section for more information about Tdyn CFD+HT 
modules.

Tdyn CFD+HT Modules Data options can be set from Modules 
Data in the tree.

3.3.1. Fluid Flow data

General
Use Total Pressure: Mark if you want to use total pressure 
(including fluid-static term) as internal variable in the solution of 
the fluid flow problem.

Remarks:
In most of the cases the solution of the fluid problem 
without fluid-static term is the most accurate one. The "Use 
total pressure" option is hence deactivated by default since 
the pressure calculation algorithm is usually more precise. 
It is recommended to activate this option only when fluid-
static (or more usually hidrostatic) effects are expected to 
have a significant effect in the problem under analysis. If 
this option is selected, please check the correctness of the 
pressure boundary conditions. You must ensure that such 
conditions take into account the fluid-static pressure term.

Pressure reference location: Mark if you want to define the origin 
of the fluid-static pressure term.

Pressure Origin: Coordinates of the total pressure origin.

Xplane Symmetry in Fluid: Mark if you want to define symmetry 
planes in the fluid problem, perpendicular to OX axis.

Xplane Symmetry Position: Position of the symmetry planes in the 
fluid problem, perpendicular to OX axis, given in the units of the 
geometry.

Yplane Symmetry in Fluid: Mark if you want to define symmetry 
planes in the fluid problem, perpendicular to OY axis.

Yplane Symmetry Position: Position of the symmetry planes in the 
fluid problem, perpendicular to OY axis, given in the units of the 
geometry.

Zplane Symmetry in Fluid: Mark if you want to define symmetry 
planes in the fluid problem, perpendicular to OZ axis.

Zplane Symmetry Position: Position of the symmetry planes in the 
fluid problem, perpendicular to OZ axis, given in the units of the 
geometry.

Operating Pressure: this is the reference pressure for 
compressible solvers. It is always taken into account to evaluate 
compressibility effects. The user must introduce pressure 
boundary conditions in accordance to the operating pressure 
value introduced in this field. In this sense, if for instance the 
atmospheric pressure is the actual value of the operating 
pressure introduced in this field, then you can fix the outlet 
boundary condition equal to zero and the inlet pressure equal 
to the actual inlet overpressure. On the contrary, if you use a 
cero pressure value as the operating pressure, then you must 
fix the outlet pressure boundary condition equal to the 
atmospheric pressure, and the inlet boundary condition equal 
to the atmospheric pressure plus the corresponding 
overpressure. In fact, both cases will provide the correct 
density, but only using the second approach you will also obtain 
the actual absolute pressure and total force over bodies.

Algorithm

Velocity Advect Stabilisation: Order of the FIC advection 
stabilisation term in the Navier Stokes equations. Three 
available options are Auto, 4th_Order and 2nd_Order.

Remarks: 

The 4th order term increases the accuracy of the 
solution and is recommended in most of the cases. 
However in some problems it may cause 
instabilities.

Auto mode will automatically switch between 4th 
and 2nd order scheme, depending on the 
smoothness of the solution.

Velocity Control Level: Level of control of instabilities (0 means 
Off). If instabilities are found in the velocity field when using the 
2nd_Order Velocity Advect Stabilisation, first try to reduce Time 
Increment, then to increase this value. Note that high values 
may cause over-diffusive results.

TauCalcType:  This indicates the method for calculating the 
stabilisation parameter tau. This should not be changed from its 
default value (geometrical), for most of the cases. Nevertheless, 
analytical method gives good results in cases where boundary 
layer mesh is involved.

StabTauV MinRatio: Minimum admissible ratio (τ/dt, being dt the 
time increment) for the stabilisation parameter τ of the velocity 
solver. It will be also used for temperature and advection of 
species problems.

Remarks: 

Advection stabilisation term is proportional to the 
parameter τ. In most of the cases, the minimum 
value of this parameter should not be fixed (i.e. 
τ/dt = 0.0), otherwise oscillations may appear. 

Velocity Inner Iterations: Number of iterations of the inner 
nonlinear fluid flow momentum eq. solver (performed every 
external iteration).

Velocity Norm: Velocity Euclidean norm used to check 
convergence in the non-linear iteration loop.

Velocity Boundary type: AdvancedVBC implements specific 
treatment of boundary conditions for momentum equation in 
those boundaries with transient velocity conditions.

Pressure Stabilisation: Scheme to be used in the stabilisation of 
the Pressure solver of the Navier Stokes equations.

StabTauP min. ratio: Minimum admissible ratio (tau/dt) for the 
stabilization parameter tau used in the pressure stabilization.

StabTauP max. ratio: Maximum admissible ratio (tau/dt) for the 
stabilization parameter tau used in the pressure stabilization.

Pressure Inner Iterations: Number of iterations of the inner 
nonlinear Navier Stokes pressure solver (performed every 
external iteration).

Pressure Norm: Pressure Euclidean norm used to check 
convergence in the non-linear iteration loop.
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Pressure Boundary type: AdvancedPBC implements specific 
treatment of boundary conditions for mass balance equation in 
those boundaries with transient velocity conditions.

Initialise Flow Field: If Potential_Flow is selected, then the initial 
velocity and pressure field is taken from the adaptation of the 
solution of a potential flow problem, trying to the imposed 
boundary conditions. The available options are None, 
Potential_Flow and Stokes_Flow.

Floatability by Density:  This must be activated if the floatability 
forces existing in fluids, due to changes in density, are to be 
simulated. 

Turbulence
Turbulence Model: Select the turbulence model to be used in the 
solution of the fluid flow problem.

Laminar: Navier Stokes equations are solved (i.e. 
Reynolds stress tensor is neglected and therefore 
only direct simulation of turbulence is done).

Mixing_Length: Basic turbulence model based in 
the Prandtl hypothesis, where the turbulence 
length scale (L) is given in the EddyLen Field entry.

Smagorinsky: Basic large eddy simulation (LES) 
turbulence model. The implementation includes 
an eddy viscosity damping in the boundary layer 
area. See Turbulence Modelling section for further 
information.

Kinetic_Energy: Prandtl's one equation (k) model for 
turbulent flows with integration to the wall, where 
the turbulence length scale (L) is given in the 
EddyLen Field entry.

K_Energy_Two_Layers: Prandtl's one equation (k) 
model for turbulent flows with integration to the 
wall, where the turbulence length scale (L) is given 
in the EddyLen Field entry. The implementation of 
this model includes an eddy viscosity damping in 
the boundary layer area.

K_E_High_Reynolds: Two-equation k-ε model for 
turbulent flows. The model implemented is based 
on the standard formulation with some 
modifications to be used with different wall 
boundary conditions. See Turbulence Modelling 
section for further information.

K_E_Two_Layers: Two-equation k-ε model for 
turbulent flows with integration to the wall. This 
implementation uses the high-Re k-ε model only 
away from the wall in the fully turbulent region, 
and the near-wall viscosity affected layer is 
resolved with a one-equation model involving a 
length-scale prescription. See Turbulence 
Modelling section for further information.

K_E_Lam_Bremhorst: Two-equation k-ε model for 
turbulent flows with integration to the wall. The 
model implemented is based on the description 
done by Lam-Bremhorst with some modifications 
to be used with different wall boundary conditions. 
See Turbulence Modelling section for further 
information.

K_E_Launder_Sharma: Two-equation k-ε model for 
turbulent flows with integration to the wall. The 
model implemented is based on the description 
done by Launder and Sharma with some 
modifications to be used with different wall 
boundary conditions. See Turbulence Modelling 
section for further information.

K_Omega: Two equation k-ω model for turbulent 
flows with integration to the wall. The model 
implemented is based on the description done by 
Wilcox with some modifications to be used with 
different wall boundary conditions. See Turbulence 
Modelling section for further information.

K_Omega_SST: Two-equation model for turbulent 
flows with integration to the wall, expressed in 
terms of a k-ω model formulation. The k-ω SST 
shear-stress-transport model combines several 
desirable elements of standard k-ε and k-ω models. 
See Turbulence Modelling section for further 
information.

K_KT: Two-equation k-kτ model for turbulent flows 
with integration to the wall. The model 
implemented is based on the description done by 
Wilcox with some modifications to be used with 
different wall boundary conditions. See Turbulence 
Modelling section for further information.

Spalart_Allmaras: One equation model for 
turbulent flows with integration to the wall. See 
Turbulence Modelling section for further 
information.

ILES: Implicit LES model based on Finite Increment 
Calculus formulation.

Remarks: 

For further information about the turbulence models 
and how to solve turbulence flows, please consult the 
Tdyn's Turbulence Handbook.

Turbulence Advect Stabilisation: Order of the FIC advection 
stabilisation term in the turbulence equations. Three available 
options are Auto, 4th_Order and 2nd_Order.

Remarks: 

The 4th order term increases the accuracy of the 
solution and is recommended in most of the cases. 
However in some problems it may cause 
instabilities.

Auto mode will automatically switch between 4th 
and 2nd order scheme, depending on the 
smoothness of the solution.

Turbulence Control Level: Level of control of instabilities for 
turbulence (0 means Off). If unstabilities are found in the eddy 
viscosity field when using the 2nd_Order Turbulence Advect 
Stabilisation, first try to reduce Time Increment and refine the 
mesh when possible, then to increase this value. Note that high 
values may cause over-diffusive results.

Turbulence Inner Iterations: Number of iterations of the inner 
nonlinear turbulence solver (performed every external 
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iteration).

Advanced turbulence options can be accessed by using the 
following option of the tree to open the Ransol module Advanced 
data window:

Modules data ► Fluid flow ► Turbulence ► More...

The advanced options available in the contextual window are 
detailed in what follows:

Fix Turbulence on Bodies: If Yes is selected, turbulence variables 
will have a fixed value, given by the selected law of the wall on 
the bodies surfaces. If No is selected, natural boundary 
condition will be applied.

Tvisco Min Ratio: Eddy viscosity ratio with the minimum of initial 
values of the eddy viscosity, used to calculate the minimum 
admissible value.

Tvisco Max Ratio: Eddy viscosity ratio with the maximum of initial 
values of the eddy viscosity, used to calculate the maximum 
admissible value (> 1.0).

Kenergy Min Ratio: Eddy kinetic energy (k) ratio with maximum of 
the initial values of k, used to calculate the minimum admissible 
value.

Kenergy Max Ratio: Eddy kinetic energy (k) ratio with maximum 
of the initial values of k, used to calculate the maximum 
admissible value.

Epsilon Min Ratio: Epsilon (ε) ratio with the maximum of initial 
values of ε, used to calculate the minimum admissible value.

Epsilon Max Ratio: Epsilon (ε) ratio with the maximum of initial 
values of ε, used to calculate the maximum admissible value.

Omega Min Ratio: Omega (ω) ratio with the maximum of initial 
values of ω, used to calculate the minimum admissible value.

Omega Max Ratio: Omega (ω) ratio with the maximum of initial 
values of ω, used to calculate the maximum admissible value (> 
1.0).

K Tau Min Ratio: K Tau (kτ) ratio with the maximum of initial 
values of kτ, used to calculate the minimum admissible value.

K Tau Max Ratio: K Tau (kτ) ratio with the maximum of initial 
values of kτ, used to calculate the maximum admissible value.

Turbulence_Control_Level: Level of turbulence stabilisation control 
(0 means Off). If instabilities are found in the eddy viscosity 
field, refine the mesh when possible, reduce Time_Increment or 
increase this value. Note that too high values may cause over-
diffusive eddy viscosity results. Recommended value is 2.

EddyKEnergy_Production_Limit: Maximum ratio between the Eddy 
kinetic energy production and reaction term. This limiter may 
prevent the unrealistic buildup of eddy viscosity in the 
stagnation region of the bodies. Recommended value is 20.0.

Epsilon_Production_Limit: Maximum ratio between the Epsilon 
production and reaction term.

Epsilon_Reaction_Limit: Maximum ratio between the Epsilon 
reaction and production term.

Omega_Production_Limit: Maximum ratio between the Omega 
production and reaction term.

Omega_Reaction_Limit: Maximum ratio between the Omega 
reaction and production term.

EddyViscoT_Production_Limit: Maximum ratio between the 

Spallart-Almarax model production and reaction term.

EddyViscoT_Reaction_Limit: Maximum ratio between the Spallart-
Almarax model reaction and production term.

3.3.2. Mesh Deformation data
Fluid Mesh Deformation: Mesh updating in fluid domain may be 
done by three different procedures:

Lagrangian update: Mesh deformation is performed 
following the velocity of the fluid. The following equations 
must be entered in Fluid deformation increment:
 OX: vx*dt
 OY: vy*dt

 OZ: vz*dt
ByBodies: Mesh deformation only takes into account the 
movement of the defined bodies.
ByFunctions: Mesh deformation is performed following the 
values given in the Fluid Deformation Increment field.

ByAllData: Mesh deformation algorithm try to fulfil all the 
requirements (movement of bodies, deformation given in 
Fluid Deformation Increment field and boundary conditions).

Update fluid mesh every (steps): Mesh updating in fluid domain in 
carried out every Update fluid mesh every (steps) steps. If set to 
zero, the mesh deformation is just done before the first time 
step.

Fluid Deformation Increment: Functions defining fluid mesh 
deformation have to be inserted here. These functions must 
define the deformation increment for every time step. For 
example, a planar rotation around origin (0,0,0) may be defined 
by inserting the functions xrot(w*dt), yrot(w*dt), 0.0, being w 
the angular velocity. Note that if the geometry units and the 
deformation units are different, since xrot and yrot are 
evaluated using internal units, the returning values have to be 
multiplied by the unit conversion factor.

Solid Mesh Deformation: Mesh updating in solid domain may be 
done by three different procedures:

ByBodies: Mesh deformation only takes into account the 
movement of the defined bodies.
ByFunctions: Mesh deformation is performed following the 
values given in the Solid Deformation Increment field.

ByAllData: Mesh deformation algorithm try to fulfil all the 
requirements (movement of bodies, deformation given in 
Solid Deformation Increment field and boundary conditions).

Update solid mesh every (steps): Mesh updating in solid domain in 
carried out every Update solid mesh every (steps) steps.

Solid Deformation Increment: Functions defining solid mesh 
deformation have to be inserted here. These functions must 
define the deformation increment for every time step. For 
example, a planar rotation around origin (0,0,0) may be defined 
by inserting the functions xrot(w*dt), yrot(w*dt), 0.0, being w 
the angular velocity. Note that if the geometry units and the 
deformation units are different, since xrot and yrot are 
evaluated using internal units, the returning values have to be 
multiplied by the unit conversion factor.

Movement stabilisation factor: This factor is used to increase 
stability of the body movement. Higher values (>0.1) can 
produce compressibility effects which are necessary in the case 
of impact problems. Increase of this parameter, should be 
followed by an increase of Pressure Inner Iterations value.
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3.3.3. Heat Transfer data
Temp. Advect Stabilisation: Order of the FIC advection 
stabilisation term in the temperature equation. Three available 
options are Auto, 4th_Order and 2nd_Order.

Remarks: 

The 4th order term increases the accuracy of the solution 
and is recommended in most of the cases. However in 
some problems it may cause instabilities.

Auto mode will automatically switch between 4th and 2nd 
order scheme, depending on the smoothness of the 
solution.

Temp. Control Level: Level of control of instabilities (0 means Off). 
If instabilities are found in the velocity field when using the 
2nd_Order Temp. Advect Stabilisation, first try to reduce Time 
Increment, then to increase this value. Note that high values 
may cause over-diffusive results.

Temp. Inner Iterations: Number of iterations of the inner 
(nonlinear) temperature eq. solver (performed every external 
iteration).

Temperature Norm: Temperature Euclidean norm used to check 
convergence in the non-linear iteration loop.

Prandtl Number: Prandtl number used to include turbulence 
effects in the temperature calculations.

Radiation model: model to be used in problems that involve heat 
transfer by radiation. There are currently two different radiation 
models available in Tdyn CFD+HT, P-1 and surface to surface 
(S2S) radiation models. The P-1 radiation is the simplest case of 
the more general P-N model. It is intended to be used in 
modelling problems that involve participating media, since it 
includes the effect of scattering. On the other hand, the S2S 
model is provided to take into account the radiation exchange 
in an enclosure of gray-diffuse surfaces that depends on the 
size, separation distance and orientation of the emitting 
surfaces. It implies the usage of the view factor geometric 
function.

Elements per patch: this option only concerns the S2S heat 
transfer by ration model. It determines the number of elements 
per patch to be used in the calculation of the view factor matrix. 
A large number of elements per patch will reduce the 
computation time for the evaluation of the view factor matrix at 
the expense of the accuracy.

3.3.4. Free Surface (Transpiration) data

Wave Elevation Norm: Euclidean norm of wave elevation field 
used to check convergence in the non-linear iteration loop.

3.3.5. Free Surface (ODDLS) data 

Advect stabilisation: Order of the FIC advection stabilisation term 
in the variable equation. Three available options are Auto, 
4th_Order and 2nd_Order.

Remarks: 

The 4th order term increases the accuracy of the solution 
and is recommended in most of the cases. However in 
some problems it may cause instabilities.

Auto mode will automatically switch between 4th and 2nd 
order scheme, depending on the smoothness of the 
solution.

Control level: Level of control of instabilities (0 means Off). If 

instabilities are found in the variable field when using the 
2nd_OrderAdvect Stabilisation, first try to reduce Time Increment, 
then to increase this value. Note that high values may cause 
over-diffusive results.

Number of Phases: Set to One_Phase to just simulate the 
evolution of the primary phase (mono-phase flow with free 
surface). This option is useful in many cases of water-air flows, 
where the influence of the air movement in the water flow is 
negligible. Two_Phases option will run the two phases flow 
algorithm.

Convergence norm: Euclidean norm used to check convergence 
in the non-linear iteration loop.

Solver Scheme: Set to Naval to increase the accuracy in those 
problems where the pressure distribution is mainly hydrostatic 
(it requires vertical coordinate to be parallel to Z axis). 

Reinitialisation Every (Steps): In most of the cases, reinitialisation 
of the level set field is not necessary to be done every time step. 
This option sets the number of time steps to wait to the next 
reinitialisation.

Boundary type: AdvancedOBC implements specific treatment of 
boundary conditions for odd level set equation in those 
boundaries with fixed velocity conditions.

Mass conservation: If On is selected, additional conservation of 
primary phase is enforced. If Fixed is selected the Mass increment
 per time step is defined in the next entry. In those cases which 
the Mass increment is known, the accuracy of the results will be 
increases selecting the Fixed option and inserting the correct 
value in the Mass increment entry.

Mass increment: Mass increment per time step used to apply 
additional volume conservation. 

Units of the Mass increment may be defined in the menu next to 
the Mass increment entry. It is possible to define additional units 
by entering new dimensionally correct units in the box (see 
Units Syntax section for further information).

3.3.6. Comfort
This data group includes different entries required for the 
thermal comfort module of Tdyn based on the Fanger's method. 

The Fanger's method, through the calculation of the Predicted 
Mean Vote (PMV), predicts the thermal comfort, and extends the 
PMV to predict the proportion of dissatisfied people with the 
environment in terms of their comfort vote, Predicted Percentage 
Dissatisfied (PPD). 

The PMV index predicts the mean response of a large group of 
people according to the American Society of Heating, Refrigerating 
and Air-Conditioning Engineers (ASHRAE) thermal sensation scale, 
from -3 (cold) to +3 (hot), where 0 represents a neutral thermal 
feeling.

Mean Radiant Temperature: the uniform temperature of an 
imaginary enclosure in which the radiation from the occupant 
equals the radiant heat transfer in the actual non-uniform 
enclosure.

Relative Humidity: a term used to describe the amount of water 
vapor in a mixture of air and water vapor expressed as a 
percentage:

Φ = ew/e*
w X 100%
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with ew=partial pressure of water vapor 
(H2O) and e*

w= saturated vapor pressure 
of water.

Clothing Factor: insulation of clothes measured with the unit 
"clo", where 1 clo = 0.155 m2K/W.

Metabolic Rate: human body heat production measured in the 
unit "met", where 1 met = 58 W/m2.
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3.4. Conditions and Initial Data
Conditions are all properties of a problem (except Materials) 
that can be assigned to an entity, in order to define the basic 
boundary conditions of a problem. Conditions should be used to 
define inflow and outflow boundary conditions, symmetry or far 
field conditions, as well as complex boundary conditions like 
body wall type (i.e. law of the wall) or free surface.

In Tdyn CFD+HT conditions are available through the Tdyn data 
tree that can be accessed by using the following menu 
sequence:

Data ► Data ► Conditions and Initial Data

If a mesh has already been generated, any change in the 
condition assignments, requires meshing again to transfer 
these new conditions to the mesh. If the conditions were 
changed and a new mesh was not generated, the user will be 
warned, when the data for the analysis is being written.

3.4.1. Fluid Flow Analysis Conditions

The following boundary conditions are available in the Fluid 
Flow Analysis of Tdyn CFD+HT,beneath the following section of 
the data tree.

Conditions and Initial Data ► Fluid Flow

Wall/Bodies
Wall/Bodies boundaries allow the user to define special 
boundary conditions, representing physical walls or bodies. The 
options available include analytical Law of the Wall as well as 
body motion properties. These properties can be assigned to 
lines (2D plane or 2D Axisymmetric), surfaces (3D) or boundary 
meshes.

Remarks:
If any entity is defined as a Wall/Body the graphs of the 
reaction forces on the fluid will be available in the post-
process of Tdyn CFD+HT.

If any entity is defined as a Wall/Body and any movement 
is enabled (Mesh Deformation Analysis activated), the 
graphs of this movement will be available in the post-
process of Tdyn CFD+HT.

In order to transfer Wall/Body data to the mesh, Meshing 
Criteria must be fixed to Yes in the corresponding 
geometrical entities. Note that this action is automatically 
done by Tdyn CFD+HT in most of the cases.

Options available in Wall Type page

Fluid/Solid Wall: Choose if the boundary condition is going to be 
applied either to a Fluid or a Solid domain boundary.

BoundType: Type of the wall boundary. Several options are 
available:

InvisWall: Impose the slipping boundary condition 
(i.e. wall normal velocity component will be zero).

V_fixWall: Impose the null velocity condition on the 
boundary (i.e. velocity on the wall will be zero).

None_Wall: No conditions will be applied to the 
boundary. This boundary type can be used to 
calculate forces on different parts of a body (in 
that case, the condition will be superimposed on 
the standard body condition).

RoughWall: Law of the wall condition, taking wall 
roughness into account, is applied at the wall 
distance δ. See Near wall-modelling chapter below. 
The fluid stress (traction) given by the law of the 
wall at a wall distance δ will be applied as 
boundary condition in the fluid solver. The wall 
distance must be inserted in the field Delta (see 
below).

DeltaWall: Extended law of the wall condition is 
applied on the boundary at the wall distance δ. See 
Near wall-modelling chapter below. The fluid 
stress (traction) given by the law of the wall at a 
wall distance δ will be applied as boundary 
condition in the fluid solver. The wall distance 
must be inserted in the field Delta (see below).

YplusWall: Extended Law of the wall condition is 
applied on the boundary at the non-dimensional 
wall distance y+. See Near wall-modelling chapter 
below. The fluid stress (traction) given by the law 
of the wall at a non-dimensional wall distance y+ 
will be applied as boundary condition in the fluid 
solver. The non-dimensional wall distance must be 
inserted in the field Yplus (see below).

Cw_U2Wall: A traction given by CW·V2, where CW is a 
constant and V the fluid velocity, is imposed on the 
boundary. The constant CW must be inserted in the 
field Cw(see below).

ITTC Wall: Extended Law of the wall condition is 
applied on the boundary at the non-dimensional 
wall distance y+. The fluid stress (traction) given by 
the law of the wall at a non-dimensional wall 
distance y+ will be applied as boundary condition 
in the fluid solver. This traction is corrected 
according to the ITTC 57 friction law. The non-
dimensional wall distance must be inserted in the 
field Yplus (see below).

User Wall: Law of the wall formulation that can be 
defined by the user. It requires explicit formulation 
of the wall traction (see below FTau Field), eddy 
kinetic energy (see below KEnr Field) and the 
turbulence length scale (see below ELen Field).

Yplus: If YplusWall is selected, wall law assumption is taken up to 
the non-dimensional wall distance y+ given here. The fluid stress 
(traction) given by the law of the wall will be then applied as a 
boundary condition in the fluid solver. See Near wall-modelling 
chapter below.

Delta: If DeltaWall or RoughWall is selected, wall law assumption 
is taken up to the dimensional wall distance δ specified here. 
The fluid stress (traction) given by the law of the wall will be 
then applied as a boundary condition in the fluid solver. See 
Near wall-modelling chapter below.

Delta Units: Units of the dimensional wall distance δ given in the 
previous field.

Roughness: Roughness of the wall (only used if BoundType | 
RoughWall is selected).

Roughness Units: Units of the dimensional wall distance δ given 
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in the previous field.

Cw: Constant used in the definition of BoundType | Cw_U2Wall.

VelX/Y/Z Field: Field used for defining the velocity profile on the 
boundary for V_fixBound BoundType.

VelN Field: Field used for defining the normal velocity profile on 
the boundary for VnfixBound BoundType.

FTau Field: Field of wall traction used in the definition of 
BoundType | User Wall. It should be a explicit function of the 
variables used in Tdyn CFD+HT (see Function Syntax section for 
further information). 

KEnr Field: Field of eddy kinetic energy used in the definition of 
BoundType | User Wall. It should be a explicit function of the 
variables used in Tdyn CFD+HT (see Function Syntax section for 
further information). 

ELen Field: Field of turbulence length scale used in the definition 
of BoundType | User Wall. It should be a explicit function of the 
variables used in Tdyn CFD+HT (see Function Syntax section for 
further information). 

Sharp Angle: The slipping boundary condition for the velocity will 
be corrected if any internal angle of this Fluid Body geometry is 
smaller than the one inserted here (see Figure 7). In those 
points, the boundary condition for the velocity is ignored. This 
condition can be used for automatic correction of boundary 
conditions, in those complex geometries with trailing edges, 
where the Fluid Body normal vector is undefined. 

Figure 7. Example of application of the Sharp Angle option.

Line Fix Angle: Fix Velocity Directionboundary condition will be 
automatically applied as boundary condition if an external angle 
of this Fluid Body geometry is smaller than the one inserted here 
(see Figure 8). This condition should be used to automatically 
impose Fix Velocity Directionboundary conditions, in those 
complex geometries with edges or significant dihedral angles, 
where boundary conditions imposition by hand, may take too 
much time. 

Remarks:
In Tdyn CFD+HT 2D Plane a null velocity is imposed (instead 
of FixVelocity Directioncondition) if an external angle of a 
Fluid Body is smaller than the one inserted here.

Figure 8. Example of the places where the Line Fix Angle option 
could be useful.

SternC Angle: A control for stern of bodies (in the free surface 
transpiration problem) is carried out. This control will be applied 
in those points of the floating line of the body, where the angle 
between the normal and the velocity is greater that the value 
inserted here. See Stern flow modelling in transpiration 
problem section.

Remarks:
This option is only available if the Free Surface 
(Transpiration) Analysis is activated.

Options available in Body page

Body Mass: Mass of the body. Units of the mass field may be 
defined in the menu next to this entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Remarks:
If the check box next to the Body Mass entry is selected, 
mass of the body will be estimated by Tdyn CFD+HT, based 
on a initial equilibrium of forces.

Body Mass entry will be available for all the modules of Tdyn 
CFD+HT, not only when the Mesh Deformation Analysis is 
activated.

Center of Gravity: Vector giving the center of gravity of the body. 
Units of the center of gravity may be defined in the units section 
of the data tree.

General data ► Units ► Geometry units

Remarks:
Center of Gravity entry will be available for all the modules 
of Tdyn CFD+HT, not only when the Mesh Deformation 
Analysis is activated.

Center of Gravity can be defined by a time dependant 
function.
Center of Gravity position will be automatically updated with 
the movement of the Wall/Body. 

Radi-us/-i of Gyration: Vector giving the radii of gyration of the 
body. Units of the radii of gyration may be defined in the units 
section of the data tree 

General data ► Units ► Geometry units
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Options available in Motions 

Displacement Options: For every displacement degree of 
freedom there exists four possible options:

Off: the corresponding degree of freedom is disabled 
(movement is not allowed).
On: the corresponding degree of freedom is enables 
(movement is allowed). If the value inserted in the 
corresponding Displacement Values field is different from 
zero for t = 0, this value will be used to define an initial 
movement of the body.

Fix: the corresponding degree of freedom is fixed to the 
time dependant function given by the Displacement Values 
field (movement is prescribed). This function is useful to 
impose rigid body motions. 

Field: the corresponding degree of freedom is fixed to the 
generic function given by the Displacement Values field 
(movement is prescribed). This function is useful to impose 
body deformations.

Displacement Values: For every displacement degree of freedom, 
this vector gives the total displacement of the body. The 
corresponding fields will only be available if the Displacement 
Options field is selected as Fix. Units of the displacement values 
vector may be defined in units section of the data tree:

General data ► Units ► Geometry units

Rotation Options: For every rotational degree of freedom there 
exists three possible options:

Off: the corresponding degree of freedom is disabled 
(rotation is not allowed).
On: the corresponding degree of freedom is enables 
(rotation is allowed). If the value inserted in the 
corresponding Rotation Values field is different from zero 
for t = 0, this value will be used to define an initial 
movement of the body.

Fix: the corresponding degree of freedom is fixed to the 
value given by the Rotation Values field (rotation is 
prescribed). This function is useful to impose rigid body 
motions. 

Rotation Values: For every rotational degree of freedom, this 
vector gives the total rotation of the body. The corresponding 
fields will only be available if the Rotation Options field is selected 
as Fix.

Options available in Actions

External Forces: This vector defines the additional external forces 
(gravity forces are not included) acting on the center of gravity 
of the body. 

External Moments: This vector defines the additional external 
moments acting on the center of gravity of the body. 

Relaxation factor: This factor is used to increase stability of the 
body movement. The evaluation of the forces is relaxed, by 
averaging the previous and current value. Recommended value 
is 0.25.

Damping factor: Damping added to the movement of the body. 
If the objective of the analysis is the steady state, it is 
recommended to increase the value of this factor 
(recommended value in those cases is 0.75).

Inlet
Inlet boundary condition is designed to represent a flow inlet. 
Use if the boundary condition is going to be applied either to a 
Fluid or a Solid entity.

Inlet of: determines wether the inlet boundary condition 
corresponds to a fluid or a solid.

Boundary Type: Type of inlet boundary. Three options are 
available:

Inlet Velc: Allows defining a velocity profile on the 
boundary. This profile is defined by inserting the 
velocity components in the fields VelX_Field, 
VelY_Field and VelZ_Field. 

Inlet VelN: Allows defining the normal velocity on 
the boundary, while tangential velocity is fixed to 
zero. This profile is defined by inserting the 
normal velocity component in the field VelN_Field.

Inlet Pres: Allows defining a pressure field on the 
inlet boundary.

Outlet
Outlet boundary condition is designed to represent a flow 
outlet. Use if the boundary condition is going to be applied 
either to a Fluid or a Solid entity.

Outlet of: determines wether the outlet boundary condition 
corresponds to a fluid or a solid.

Boundary Type: Type of outlet boundary. Two options are 
available:

OutletPres: Pressure field is defined at the outlet 
boundary.

OutletNewm: A Newmann boundary condition on 
the velocity (null derivative) is defined at the outlet 
boundary.

Fix Pressure
This condition is assigned to geometrical/mesh entities or layers 
and is used to fix the pressure at the given value.

Remarks:
When the selected flow model is PrCompressible 
(compressible based on pressure) both pressure and 
density are prescribed when this condition is applied.

Fields:

Pressure value: value (real) of the pressure.

Remarks:
For most of the problems it is strongly recommended to fix 
the pressure in at least one point of the domain.
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When the pressure is not specified in the analysis either 
directly or indirectly, no reference for the pressure exists, 
and the resulting distribution can only be used with relative 
values.
The pressure can be specified at a far field boundary (i.e. at 
the outflow boundary of the domain, when the boundary is 
far enough from the region of interest).

The pressure can also be specified at the inlet boundary. If 
the conditions at inlet are not well known, it is effective to 
move the boundary as far from the region of interest as 
possible.

When the selected flow model is PrCompressible 
(compressible based on pressure) both pressure and 
density are prescribed when this condition is applied.

Conditional Pressure
This condition is assigned to geometrical/mesh entities and 
layers and is used to specify the pressure at the value given by 
the pressure entry of the conditional data (only if the Pressure 
FuncCond data field is greater than 0):

Conditions and Initial data ► Conditional data ► 
PressureFuncCond

If the evaluation of the Pressure FuncCond field results in a value 
less than 0, the boundary conditions will not be applied. If the 
value is 0, the boundary condition will be applied only if it was 
applied in the previous time step.

Remarks:
When the selected flow model is PrCompressible 
(compressible based on pressure) both pressure and 
density are prescribed when this condition is applied.

When ConditionalPressure condition is assigned, Pressure 
Field entry is used both for defining initial values (t = 0) 
when starting calculation and for evaluating the assigned 
condition the rest of time steps.

Entries of Conditional data may be defined by functions 
(see Function Syntax section).

Pressure FuncCondand Pressure Field entries are common for 
every Conditional Pressure condition and can only be 
modified in the Conditional data of the Fluid Flow 
conditions
In most of the problems, it is recommended to fix the 
pressure in at least one point of the domain. When the 
pressure is not specified in the analysis either directly or 
indirectly, no reference for the pressure exists, and the 
resulting distribution can only be used with relative values.

Sometimes the pressure is specified at a far field boundary 
(i.e. at the outflow boundary of the domain, when the 
boundary is far enough from the region of interest).

Sometimes the pressure is specified also at the inlet 
boundary. If the conditions at inlet are not well known, it is 
effective to move the boundary as far from the region of 
interest as possible.

Pressure Field
This condition is assigned to geometrical/mesh entities and is 
used to fix the pressure at the value given by the Pressure Field 
entry of the initial and field data conditions in the data tree:

Conditions and Initial data ► Initial and Conditional data ► 
Pressure Field

Remarks:
When the selected flow model is PrCompressible 

(compressible based on pressure) both pressure and 
density are prescribed when this condition is applied.

Fields:

Fix Initial: The pressure will be fixed to the initial value 
(evaluated at t=0) of the function inserted in the Pressure Field 
entry of the Initial and Field data conditions in the tree. 
Pressure Field entry is evaluated at the initial step (t=0) and 
pressure is fixed to the resulting value for the rest of the 
execution.

Fix Field: The pressure will be fixed to the value (for every time 
step) of the function inserted in the Pressure Field of the Initial 
and Field data conditions in the tree. Pressure Field entry is 
evaluated every step and pressure is fixed to the resulting 
value.

Remarks:
In most of the problems, it is recommended to fix the 
pressure in at least one point of the domain. When the 
pressure is not specified in the analysis either directly or 
indirectly, no reference for the pressure exists, and the 
resulting distribution can only be used with relative values.

When Pressure Field condition is assigned,Pressure Field 
entry is used both for defining initial values (t = 0) when 
starting calculation and for evaluating the assigned 
condition the rest of time steps.

Pressure Field value is common for every Pressure Field 
condition and can only be modified in the Initial and Field 
data conditions in the tree.
Sometimes the pressure is specified at a far field boundary 
(i.e. at the outflow boundary of the domain, when the 
boundary is far enough from the region of interest).

Sometimes the pressure is specified also at the inlet 
boundary. If the conditions at inlet are not well known, it is 
effective to move the boundary as far from the region of 
interest as possible.

This condition allows a definition of transient boundary 
conditions for the pressure. The analytical functions 
defining transient boundary conditions will be specified in 
the corresponding function inserted in the Pressure Field 
entry of the Initial and Field data conditions in the tree.

If the boundary conditions for the pressure are steady, this 
condition can be substituted by the Fix Pressure condition. 
The only difference between these two options in this case 
is, that when using Pressure Field, the value of the fixed 
pressure can be changed automatically in every entity by 
updating the corresponding function inserted in the 
Pressure Field entry of the Initial and Field data conditions 
in the tree.
Entries of the Initial and Field data conditions may be 
defined by functions (see Function Syntax section).

Fix Velocity

This condition is assigned to geometrical/mesh entities or layers 
and is used to fix the velocity at the given value.

Fields:

X Component: Value (real) of the OX component of the velocity.

Fix X: Only if marked the OX component of the velocity will be 
fixed.

Y Component: Value (real) of the OY component of the velocity.

Fix Y: Only if marked the OY component of the velocity will be 
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fixed.

Z Component: Value (real) of the OZ component of the velocity.

Fix Z: Only if marked the OZ component of the velocity will be 
fixed.

Remarks:
The velocity has to be prescribed at the inlet boundary. If 
the conditions at inlet are not well known, it is effective to 
move the boundary as far from the region of interest as 
possible.

Conditional Velocity

This condition is assigned to geometrical/mesh entities and 
layers and is used to specify the velocity at the value given by 
the corresponding Velocity X/Y/Z Field entries of the Conditional 
data conditions in the tree (only if the given conditional data 
field is greater than 0):

Conditions and Initial data ► Conditional data ► Velocity 
X/Y/Z FuncCond

If the evaluation of the corresponding Velocity X/Y/Z FuncCond 
field results in a value less than 0, the boundary conditions will 
not be applied. If the value is 0, the boundary condition will be 
applied only if it was applied in the previous time step.

Remarks:
When Conditional Velocity condition is assigned,Velocity 
X/Y/Z Field entries are used both for defining initial values (t 
= 0) when starting calculation and for evaluating the 
assigned condition the rest of time steps.

Entries of the Conditional data may be defined by 
functions (see Function Syntax section).

Velocity X/Y/Z FuncCond entries are common for every 
Conditional Velocity condition and can only be modified in 
the Conditional data.
The velocity has to be prescribed at every inlet boundary. If 
the conditions at inlet are not well known, it is effective to 
move the boundary as far from the region of interest as 
possible.

Velocity Field

This condition is assigned to geometrical/mesh entities and 
layers and is used to specify the velocity at the value given by 
the corresponding functions of the Initial and Field data 
section of the data tree:

Conditions and Initial data ► Initial and Conditional data ► 
Initial and Field data

Remarks:
Entries of the Initial and Field data may be defined by 
functions (see Function Syntax section).

Fields:

Fix Initial X: The OX component of the velocity will be fixed to the 
initial value (evaluated in t=0) of the corresponding function of 
the Initial and Field data (Velocity X Field entry) only if the field is 
marked. Velocity X Field is evaluated at the initial step (t=0) and 
velocity component is fixed to the resulting value for the rest of 
the execution.

Fix Initial Y: The OY component of the velocity will be fixed to the 
initial value (evaluated in t=0) of the corresponding function of 
the Initial and Field data (Velocity Y Field entry) only if the field is 
marked. Velocity Y Field  is evaluated at the initial step (t=0) and 
velocity component is fixed to the resulting value for the rest of 

the execution.

Fix Initial Z: The OZ component of the velocity will be fixed to the 
initial value (evaluated in t=0) of the corresponding function of 
the Initial and Field data (Velocity Z Field entry) only if the field is 
marked. Velocity Z Field is evaluated at the initial step (t=0) and 
velocity component is fixed to the resulting value for the rest of 
the execution.

Fix Field X: The OX component of the velocity will be fixed to the 
value (for every time step) of the corresponding function of 
Initial and Field data (Velocity X Field entry) only if the field is 
marked. Velocity X Field is evaluated every step and the 
corresponding velocity component is fixed to the resulting 
value.

Fix Field Y: The OY component of the velocity will be fixed to the 
value (for every time step) of the corresponding function of the 
Initial and Field data (Velocity Y Field entry) only if the field is 
marked. Velocity Y Field is evaluated every step and the 
corresponding velocity component is fixed to the resulting 
value.

Fix Field Z: The OZ component of the velocity will be fixed to the 
value (for every time step) of the corresponding function of the 
Initial and Field data (Velocity Z Field entry) only if the field is 
marked. Velocity Z Field is evaluated every step and the 
corresponding velocity component is fixed to the resulting 
value.

Remarks:
The velocity has to be prescribed at every inlet boundary. If 
the conditions at inlet are not well known, it is effective to 
move the boundary as far from the region of interest as 
possible.

When Velocity Field condition is assigned, Velocity X/Y/Z 
Field entries are used both for defining initial values (t = 0) 
when starting calculation and for evaluating the assigned 
condition the rest of time steps.

This condition allows definitions of transient boundary 
conditions for the velocity. The analytical functions defining 
transient boundary conditions will be specified in the 
corresponding Initial and Field data section of the data 
tree.
If the boundary conditions for the velocity are steady, this 
condition can be substituted by the Fix Velocity condition. 
The only difference between these two options in this case 
is, that when using the Velocity Field, the value of the fixed 
velocity can be changed automatically in every entity by 
updating the corresponding Initial and Field data of the 
Fluid Flow conditions in the tree.

Fix Turbulence
This condition is assigned to geometrical/mesh entities and 
layers and is used to fix the turbulence variables for those 
turbulence models based on the Reynolds extended analogy, at 
the initial (evaluated for t=0) value given by the corresponding 
functions (EddyKEner Field and EddyLength Field) of the Initial 
and Field data section of the data tree:

Conditions and Initial data ► Initial and Conditional data ► 
Initial and Field data ► EddyKEner field

Conditions and Initial data ► Initial and Conditional data ► 
Initial and Field data ► EddyLength field

Fields:

Fix: The turbulence will be fixed to the initial value (evaluated in 
t=0) of the corresponding function of the Initial and Field data 
section the tree only if this field is marked. EddyKEner Field and 
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EddyLength Field give the value of the eddy energy and 
turbulence length scale or mixing length (see Turbulence 
modelling section), respectively.

Remarks:
The turbulence variables have to be prescribed at every 
inlet boundary. In those entities where all components of 
the velocity have been prescribed, Tdyn CFD+HT 
automatically fixes all turbulence variables at the initial 
(evaluated for t=0) value given in the EddyKEner Field and 
EddyLength Field entries of the Initial and Field data 
section of the tree. Therefore, assignment of this condition 
should not be necessary in most of the cases.

Fix Turbulence condition will only be useful for those 
turbulence models based on Reynolds extended analogy 
(see Turbulence Modelling section for further information).

Remove Velocity Conditions

This condition is assigned to geometrical/mesh entities and 
layers and makes the program to ignore any specification on 
the velocity field.

Fields:

Free Velocity: The velocity will be removed only if this field is 
marked.

Remarks:
This option allows the solver to accomplish the Kutta-
Jukowsky condition. In these cases the Remove Velocity 
condition will be assigned to the extreme point of the tail of 
a profile. It is also possible to automatically correct velocity 
impositions in these areas by using the Wall/Bodies 
options (see Sharp Angle option).

Fix Velocity Direction

This condition is assigned to geometrical/mesh entities and may 
be used to define the direction of the velocity, according to the 
orientation of the skew system.

Fields:

Local Axes: Orientation of the Cartesian axes used to define the 
direction of the component of the velocity vector. These can be 
local axes of the geometry (-Automatic- option) or any user 
defined system.

Type: Axis of the Local Axes definition. The component of the 
velocity vector, parallel to this axis, will be fixed to the given 
value. The normal velocity component to a line or a surface can 
be fixed by selecting Y_Axis or Z_Axis. To see the defined Local 
Axes, press the button Draw.

Remarks:
Usually, the direction of the velocity has to be prescribed in 
some edges or areas with strong geometrical changes of 
the geometry.

The direction of the velocity can be automatically imposed 
by using the Wall/Bodies options (see Fix Angle option).

Fix Velocity Component

This condition is assigned to geometrical/mesh and is used to 
specify the value of a component of the velocity vector.

Fields:

Local Axes: Orientation of the Cartesian axes used to define the 
direction of the component of the velocity vector. These can be 

local axes of the geometry (-Automatic- option) or any user 
defined system.

Type: Axis of the Local Axes definition. The component of the 
velocity vector, parallel to this axis, will be fixed to the given 
value. The normal velocity component to a line or a surface can 
be fixed by selecting Y_Axis or Z_Axis. To see the defined Local 
Axes, press the button Draw.

Value: Value of the component of the velocity in the direction 
given by Type axis.

Remarks:
This option is used to prescribe slipping boundary 
conditions on a velocity field. Since the normal vector is 
sometimes undefined in some complex areas (i.e. dihedral 
angles) of the geometry, in some cases it is better to use 
the Wall/Bodies options instead.

3.4.2. Heat Transfer Analysis Conditions

The following boundary conditions are available when the Heat 
Transfer Analysis of Tdyn CFD+HT is activated.

Fix Temperature

This condition is assigned to geometrical/mesh entities and 
layers and is used to fix the temperature in a geometrical entity 
or layer to the given value.

Fields:

Value: Value of the temperature.

Conditional Temperature

This condition is assigned to geometrical/mesh entities and 
layers and is used to fix the temperature to the value given by 
the function inserted in the Temperature FuncCond entry of the 
Conditional Data section of the tree:

Conditions and Initial data ► Initial and Conditional data ► 
Conditional data ► Temperature FuncCond

Fields:

Fix Initial: The temperature will be fixed to the initial value 
(evaluated in t=0) of the function inserted in the Temperature 
FuncCond entry of the Conditional Data only if the field is 
marked. 

Temperature Field is evaluated initial step (t=0) and temperature 
is fixed to the resulting value for the rest of the execution.

Fix Field: The temperature will be fixed to the value (for every 
time step) of the function inserted in the Temperature FuncCond 
entry of the Conditional Data. Temperature FuncCond entry is 
evaluated every step and temperature is fixed to the resulting 
value.

Remarks:
This condition allows definitions of transient boundary 
conditions for temperature. The analytical functions 
defining transient boundary conditions will be specified in 
the Temperature FuncCond entry of the Conditional Data in 
Heat Transfer Conditions entry of the tree.

If the boundary conditions for the temperature are steady, 
this condition can be substituted by the Fix Temperature 
condition. The only difference between these two options 
in this case is, that when using the Temperature Field, the 
value of the fixed temperature can be changed 
automatically in every entity by updating the Temperature 
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Field entry of the Conditional Data.

When Temperature Field condition is assigned, 
Temperature Field entry is used both for defining initial 
values (t = 0) when starting calculation and for evaluating 
the assigned condition the rest of time steps.

Temperature Field

This condition is assigned to geometrical/mesh entities and 
layers and is used to fix the temperature at the value given by 
the function inserted in the Temperature Field entry of the Initial 
and Field Data section of the tree:

Conditions and Initial data ► Initial and Conditional data ► 
Initial and Field data ► Temperature field

Fields:

Fix Initial: The temperature will be fixed to the initial value 
(evaluated in t=0) of the function inserted in the Temperature 
Field entry of Initial and Field Data only if the field is marked. 

Temperature Field is evaluated initial step (t=0) and temperature 
is fixed to the resulting value for the rest of the execution.

Fix Field: The temperature will be fixed to the value (for every 
time step) of the function inserted in the Temperature Field entry 
of Initial and Field Data. Temperature Field entry is evaluated 
every step and temperature is fixed to the resulting value.

Remarks:
This condition allows definitions of transient boundary 
conditions for temperature. The analytical functions 
defining transient boundary conditions will be specified in 
the Temperature Field entry of Initial and Field Data.

If the boundary conditions for the temperature are steady, 
this condition can be substituted by the Fix Temperature 
condition. The only difference between these two options 
in this case is, that when using the Temperature Field, the 
value of the fixed temperature can be changed 
automatically in every entity by updating the Temperature 
Field entry of Initial and Field Data.

When Temperature Field condition is assigned, 
Temperature Field entry is used both for defining initial 
values (t = 0) when starting calculation and for evaluating 
the assigned condition the rest of time steps.

Heat Flux
Heat Flux: Heat flow (power) entering to domain through this 
Fluid/Solid Boundary. It may be a constant or a function. Units 
of the heat flux field may be defined in the menu next to this 
entry. It is possible to define additional units by entering new 
dimensionally correct units in the box (see Units Syntax section 
for further information). Note that positive values mean heat 
flow entering the domain.

Reactive Heat Flux: Factor of the reactive term of the heat flow 
(power) entering to the domain through this Fluid/Solid 
Boundary. The value here inserted will be multiplied by the 
current temperature to obtain the heat flow. It may be a 
constant or a function. Units of the reactive heat flux field may 
be defined in the menu next to this entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Remarks:
Convection heat transfer may be simulated by inserting the 
function q - h·(Tm-To) in the field Heat Flux, being q a defined 
heat flow, h the transmission coefficient and To the external 

temperature. However it is recommended to split this flow 
in two terms, constant flow q +h·To that should be inserted 
in the Heat Flow field and the coefficient of the temperature 
dependent term h, that should be entered in Reactive Heat 
Flux field.

Radiation Flux
Emissivity: value of the emissivity to be used for the surfaces 
assigned to the corresponding radiation flux condition. In heat 
radiation problems this quantity measures the effectiveness of a 
material surface in emitting energy as thermal radiation. 
Quantitatively, emissivity is the ratio of the thermal radiation 
from a surface to the radiation from an ideal black surface at 
the same temperature as given by the Stefan-Boltzmann law. It 
must be a real value between 0.0 and 1.0

Wall temperature: value of temperature for the surfaces 
assigned to the corresponding radiation flux condition when 
using the P-1 radiation model.

3.4.3. Species Advection Analysis Conditions

Fix Concentration
This condition is assigned to geometrical/mesh entities and 
layers and is used to fix the value of the concentration of 
species (substances) at the given value.

Fields:

Species Name: Name of the species (see Edit Species description 
in section Materials) which concentration is to be fixed.

Concentration: Value of the concentration of the species.

Remarks: 
The value of the concentration of every species should be 
prescribed at every inlet boundary.

Conditional concentration
This condition is assigned to geometrical/mesh entities and 
layers and is used to specify the concentration of species to the 
value given by the Concentration Field entry of the Initial and 
Conditional data section of the corresponding specie definition 
that is done within the Materials sewction of the data tree (only 
if the corredponding Concentration Field data is greater than 0):

Materials ► Edit species ► Specie name ► Initial and 
Conditional

If the evaluation of the Concentration Field results in a value less 
than 0, the boundary conditions will not be applied. If the value 
is 0, the boundary condition will be applied only if it was applied 
in the previous time step.

Remarks:

Entries of Initial and Conditional data may be 
defined by functions (see Function Syntax section).

Concentration Field and Species Conditional entries 
of a given specie definition are common for every 
Conditional Concentration condition and can 
only be modified in the Initial and Conditional 
data section of the specie definition.

When Conditional Concentration condition is assigned,Conc. 
Field entry is used both for defining initial values (t = 0) when 



Compass - http://www.compassis.com
23

Tdyn CFD+HT reference manual

starting calculation and for evaluating the assigned condition 
the rest of time steps.

Concentration Field
This condition is assigned to geometrical/mesh entities and is 
used to fix the concentration of species to the value given by the 
Concentration Field entry of the Initial and Conditional data 
section of the corresponding specie definition beneath the 
Materials section:

Materials ► Edit species ► Specie name ► Initial and 
Conditional

Fields:

Specie: Name of the species (see Edit Species description in 
section Materials) whose concentration is going to be fixed.

Fix Initial: The concentration of the species will be fixed to the 
initial value (evaluated in t=0) of the function inserted in the 
Concentration Field entry of the Initial and Conditional data 
section of the specie definition. Concentration Field entry is 
evaluated at the initial step (t=0) and concentration is fixed to 
the resulting value for the rest of the execution.

Fix Field: The concentration will be fixed to the value (for every 
time step) of the function inserted in the Concentration Field 
entry of the Initial and Conditional data section of the specie 
definition. Concentration Field entry is evaluated every step and 
concentration is fixed to the resulting value.

Remarks: 
The value of the concentration of each specie should be 
prescribed at every inlet boundary.

This condition allows definitions of transient boundary 
conditions for concentration. The analytical functions 
defining transient boundary conditions will be specified in 
the Concentration Field entry of the Initial and Conditional 
data section of the specie definition.

If the boundary conditions for the concentration are steady, 
this condition can be substituted by the Fix Concentration 
condition. The only difference between these two options 
in this case is, that when using the Concentration Field, 
the value of the fixed concentration can be changed 
automatically in every entity by updating the Concentration 
Field entry of the Initial and Conditional data section of 
the specie definition.

When Concentration Field condition is assigned, 
Concentration Field entry is used both for defining initial 
values (t = 0) when starting calculation and for evaluating 
the assigned condition the rest of time steps.

Advect Flux
Advect Flux Solids/Fluids allows to select among the different 
created species list, to assign to them a flux through a certain 
boundary.

Fields:

Specie: name of the specie to which the advect flux condition will 
refer to.

SpecieFlux: Flow of the species entering to the domain through 
this Fluid/Solid Body. It may be a constant or a function. Units 
of the flux specie field may be defined in the menu next to this 
entry. It is possible to define additional units by entering new 
dimensionally correct units in the box (see Units Syntax section 
for further information).

Reactive Specie Flux: Factor of the reactive term of the flow of the 
species entering to the domain through this Fluid/Solid Body. 
The value here inserted will be multiplied by the current species 
concentration to obtain the heat flow. It may be a constant or a 
function. Units of the reactive flux specie field may be defined in 
the menu next to this entry. It is possible to define additional 
units by entering new dimensionally correct units in the box 
(see Units Syntax section for further information).

Remarks:
Entering flow of species of the form h·sp1 should be 
inserted in the Reactive Specie Flux field as h.

Note that positive values means flow entering in the 
domain.

3.4.4. PDEs solver Conditions

Fix Variable
This condition is assigned to geometrical/mesh entities and 
layers and is used to fix the value of the variable at the given 
value.

Fields:

Variable: Name of the variable (see material Edit PDEs variables 
description in section Materials) whose value is going to be 
fixed.

Value: Value of the variable.

Remarks: 
The value of the variable should be prescribed at every inlet 
boundary.

Conditional Variable
This condition is assigned to geometrical/mesh entities and 
layers and is used to specify the value of a variable at the value 
given by the Variable Field entry of the Initial and Conditional 
data section of the variable definition in the Materials section of 
the tree (only if the evaluation of the function defined in Variable 
field is greater than 0):

Materials ► Edit PDEs variables ► Variable ► Initial and 
Conditional

If the evaluation of the Variable field results in a value less than 
0, the boundary conditions will not be applied. If the value is 0, 
the boundary condition will be applied only if it was applied in 
the previous time step.

Remarks:
Entries of the Initial and Conditional data section of the 
variable definition (within the Materials section) may be 
defined by functions (see Function Syntax section). Variable 
field and Variable FuncCond. entries are common for every 
Conditional Variable condition and can only be modified 
in the Initial and Conditional section of the variable 
definition.
When Conditional Variable condition is assigned the 
Variable field entry is used for defining both initial values (t 
= 0) when starting calculation and for evaluating the 
assigned condition the rest of time steps.

Variable Field
This condition is assigned to geometrical/mesh entities and is 
used to fix the value of a variable to the value given by the 
Variable Field entry of the Initial and Conditional data section 
of the corresponding variable definition (within the Materials 
section of the data tree):
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Materials ► Edit PDEs variables ► Variable ► Initial and 
Conditional

Fields:

Variable: Name of the variable (see Edit PDEs variables 
description in section Materials) which value is to be fixed.

Fix Initial: The variable will be fixed to the initial value (evaluated 
in t=0) of the function inserted in the Variable Field entry of the 
Initial and Conditional data section of the variable definition. 
Variable Field entry is evaluated at the initial step (t=0) and the 
variable is fixed to the resulting value for the rest of the 
execution.

Fix Field: The variable will be fixed to the value (for every time 
step) of the function inserted in the Variable Field entry of the 
Initial and Conditional data section of the variable definition. 
Variable Field entry is evaluated every step and Variable is fixed 
to the resulting value.

Remarks: 
The value of the variable should be prescribed at every inlet 
boundary.

This condition allows definitions of transient boundary 
conditions for variables. The analytical functions defining 
transient boundary conditions will be specified in the 
Variable Field entry of the Initial and Conditional data 
section of the variable definition.
If the boundary conditions for the variable are steady, this 
condition can be substituted by the Fix Variable condition. 
The only difference between these two options in this case 
is, that when using the Variable Field condition, the value 
of the fixed variable can be easily updated in every entity by 
changing the Variable Field entry of the Initial and 
Conditional data section of the variable definition.
When Variable Field condition is assigned Variable Field 
entry is used both for defining initial values (t = 0) when 
starting calculation and for evaluating the assigned 
condition the rest of time steps.

PDEs Variables Flux
PDEs Variables Flux Solids/Fluids allows to select among the list of 
created variables, to assign to them a flux through a certain 
boundary.

Fields:

Variable Flux: Flow of the variable entering to the domain 
through this Fluid/Solid Body. It may be a constant or a 
function. Units of the flux phi field may be defined in the menu 
next to this entry. It is possible to define additional units by 
entering new dimensionally correct units in the box (see Units 
Syntax section for further information).

Reactive Variable Flux: Factor of the reactive term of the flow of 
the species entering to the domain through this Fluid/Solid 
Body. The value here inserted will be multiplied by the current 
variable concentration to obtain the heat flow. It may be a 
constant or a function. Units of the reactive flux phi field may be 
defined in the menu next to this entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Remarks:
Entering flow of the variable of the form h·ph1 should be 
inserted in the Reactive Variable Flux field as h.
Note that positive values means flow entering in the 
domain.

3.4.5. Mesh Deformation Conditions

Fix Mesh Deformation
This condition is assigned to geometrical/mesh entities and 
layers. It is used to fix the value of the mesh deformation to 
zero or to the value given in the Fluid Deformation Increment 
OX/OY/OZ fields in the Mesh deformation section of the data 
tree. See the following Modules Data section of the tree:

Modules data ► Fluid flow ► Mesh deformation

Fields:

Type: Type of mesh deformation. If Fix Field is selected, imposed 
mesh deformation will be defined by Fluid/Solid Deformation 
IncrementOX/OY/OZ fields (specified within the Modules data). 
If Fix Null is selected, mesh deformation is forced to be zero. 
Finally, if No Fix is selected, any other imposition on the mesh 
deformation field is ignored.

Remarks:
The type of Fluid mesh deformation to be imposed may be 
defined in the Modules Data section of the tree:

Modules data ► Fluid flow ► Mesh deformation

Fix Mesh Velocity

This condition is assigned to geometrical/mesh entities. It is 
used to fix the value of the fluid flow on the selected entity to 
the value of the mesh deformation velocity.

Conditions and Initial data ► Mesh deformation ► Fix mesh 
velocity

Fields:

Fix X: mark this field in order to fix the X velocity component of 
the fluid flow to the value provided by the X component of the 
mesh deformation velocity.

Fix Y: mark this field in order to fix the Y velocity component of 
the fluid flow to the value provided by the Y component of the 
mesh deformation velocity.

Fix Z: mark this field in order to fix the Z velocity component of 
the fluid flow to the value provided by the Z component of the 
mesh deformation velocity.

3.4.6. Free Surface Conditions (ODDLS)

ODDLS Field
This condition is assigned to geometrical/mesh entities and is 
used to fix the value of the level set function to the value given 
by the OddLevelSet field entry of the Initial and Field data 
section of the tree:

Conditions and Initial data ► Initial and Conditional data ► 
Initial and Field data

Fields:

Fix Initial: The level set function will be fixed to the initial value 
(evaluated in t=0) of the function inserted in the OddLevelSet field
 entry of the Initial and Field data section of the tree. 
OddLevelSet field entry is evaluated at the initial step (t=0) and 
level set function is fixed to the resulting value for the rest of 
the execution.

Fix Field: The level set function will be fixed to the value 
(evaluated every time step) of the function inserted in the 
OddLevelSet Field entry of Initial and Field data section of the 
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tree. OddLevelSet field entry is evaluated every time step and 
level set function is fixed to the resulting value.

Remarks: 
The value of the level set function should be prescribed at 
every inlet boundary.

This condition allows definitions of transient boundary 
conditions for level set function. The analytical functions 
defining transient boundary conditions will be specified in 
the OddLevelSet field entry of Initial and Field data.

If the boundary conditions for the variable are steady, this 
condition can be substituted by the Fix ODDLS condition. 
The only difference between these two options in this case 
is, that when using the ODDLS Field the value of the fixed 
variable can be easily updated in every entity by changing 
the OddLevelSet field of Initial and Field data.

When ODDLS Field condition is assigned,OddLevelSet field 
entry is used both for defining initial values (t = 0) when 
starting calculation and for evaluating the assigned 
condition the rest of time steps.

Fix ODDLS
This condition is assigned to geometrical/mesh entities and 
layers and is used to fix the value of the level set function.

Fields:

Value: Value of the level set function. Positive values identifies 
the primary phase. 

Remarks: 
The value of the level set function should be prescribed at 
every inlet boundary.

Conditional ODDLS
This condition is assigned to geometrical/mesh entities and 
layers and is used to specify the value of the level set function at 
the value given by the OddLevelSet FuncCond entry of the 
Conditional data section of the tree (only if the OddLevelSet 
FuncCond data field is greater than 0):

Conditions and Initial data ► Initial and Conditional data ► 
Conditional data ► OddLevelSet FuncCond

If the evaluation of the OddLevelSet FuncCond  field results in a 
value less than 0, the boundary conditions will not be applied. If 
the value is 0, the boundary condition will be applied only if it 
was applied in the previous time step.

Remarks:
Entries of Cond. Data may be defined by functions (see 
Function Syntax section).

OddLevelSet FuncCond and OddLevelSet Field entries are 
common for every Conditional ODDLS condition and can 
only be modified in Cond. Data.
When Conditional ODDLS condition is assigned, 
OddLevelSet Field entry is used both for defining initial 
values (t = 0) when starting calculation and for evaluating 
the assigned condition the rest of time steps.

3.4.7. Free Surface Conditions (Transpiration)

Fix Beta
This condition is assigned to geometrical/mesh entities and 
layers. It is used to fix the value of the wave elevation to its 
initial value. The initial value is the difference between the OZ 
coordinate of the point and the reference height of the free 

surface. See the following Modules data section of the tree:

Modules data ► Fluid flow ► General ► Pressure reference 
location

Fields:

Fix: The wave elevation will be fixed to its initial value only if this 
field is marked.

Remarks:
This option is effective in the stern of some geometries to 
keep the stability of the free surface. In most of the cases it 
can be automatically imposed by using the Wall/Body 
options (see Stern C Angle option and Stern flow modelling 
in transpiration problem section).

Free Surface
Free Surface boundary conditions identify a free surface 
boundary of a fluid in the analysis. These properties can be 
assigned to surfaces (3D).

Remarks:
Free Surface boundary condition is only available if the 
Free Surface (Transpiration) Analysis is activated.

In order to transfer Free Surface data to the mesh, 
Meshing Criteria must be fixed to Yes in the corresponding 
geometrical entities. Note that this action is automatically 
done by Tdyn CFD+HT in most of the cases.

General fields:

Time Integration: Time integration scheme used in the solution 
process of the free surface problem. The following options are 
available:

Adams_Bashforth_2: Explicit 2nd order Adams Bashforth 
scheme.
Stabilised_FIC: Time stabilised FIC scheme.

Backward_Euler: Implicit 1st order Backward Euler scheme.

Forward_Euler: Explicit 1st order Forward Euler scheme.

Crank_Nicolson: Implicit 2nd order Crank-Nicolson scheme.

Length: Characteristic length of the free surface problem (i.e. 
length of the Fluid Body).

Damping length: Relative damping length (total damping length 
is given by Damping Length x Length) to be used in this free 
surface calculation. The damping of the generated waves starts 
at a total damping length distance from the outlet of the free 
surface. 

Remarks: 
In most of the cases cases it is necessary to damp the wave 
elevation in order not to find bouncing effects in the 
boundaries.

Damping factor: Factor that controls the damping effect.

Advanced fields:

Time factor: Time integration security factor to be used in the 
explicit integration (i.e. Adams_Bashforth_2, Stabilised_FIC and 
Forward_Euler schemes) of this free surface.

Step factor: Time step ratio between free surface and fluid 
solver. It is possible to accelerate convergence by increasing this 
ratio, but may cause instability in the integration scheme. If 
chosen Time Increment is too high, reduce this value to achieve 
convergence.
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Remarks: 
Note that solutions with Step factor != 1 will only give 
realistic results for the steady state.

Advect_Stabilisation: The order of the FIC advection stabilisation 
term in the free surface equation. Two options are available 
4th_Order and 2nd_Order.

Remarks: 

The 4th order term increases the accuracy of the solution 
and is recommended in most of the cases, but in some 
problems may appear instabilities.

StabTau_MinRatio: Minimum admissible ratio (τ/dt, being dt the 
time increment) for the stabilisation parameter τ.

Remarks: 
Advection stabilisation term is proportional to the 
parameter τ. In most of the cases, the minimum value of 
this parameter should not be fixed (i.e. τ/dt = 0.0), 
otherwise oscillations may appear.
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3.5. Contacts

3.5.1. Solid-Solid Contact
Solid-Solid Contact boundaries identify a contact with 
continuity of the corresponding field between two disjoint solid 
domains. Contact properties can be defined and assigned to 
lines (2D Plane & 2D Asisymmetric analysis) or surfaces (3D 
analysis) or boundary meshes. Three contact types are 
available:

 Interpolating contact: this type of contact concerns the 
tradicional contact algorithm. Contact surfaces must be 
coincident, although resulting contact meshes may be 
different in each side.
 Distance contact: this type of contact allows to correlate the 
results between two surfaces which are not truly in contact 
and that can be even moving apart from each other.

 Periodic contact: this type of contact is used to enforce 
periodic boundary conditions. When this type of contact is 
selected, X/Y/Z Distance fields become active so that 
distance functions can be defined in order to specify the 
periodicity of the contact.

Options available in Fluid Flow module

Activate contact: if this check button is activated, the contact 
algorithm will enforce continuity in both, velocity and pressure, 
across or between solid domains.

Activate contact (only velocity): if this check button is activated, 
the contact algorithm will enforce continuity only in velocity 
across or between solid domains.

Note that these two options are mutually exclusive.

Options available in Heat Transfer module

Activate contact: thermal contact is only active if the check-
button is selected. If the check-button is not selected, thermal 
resistance is assumed to be infinite.

Thermal resistance: thermal resistance of the temperature 
contact between solid materials. If thermal resistance is null, 
contact is perfect. Thermal resistance R of an homogeneous 
layer of a solid material, can be calculated as R = e / k, being e 
the thickness of the layer, and k the thermal conductivity of the 
material.

Options available in Species Advection module

Active species: individual check buttons are available for each 
existing specie. The check button must be selected in order to 
activate the contact for the corresponding specie. If a check 
button is not selected, an infinite resistance is assumed to exist 
for that particular specie.

Resistance: Resistance term (R), defining species flow through 
the contact as dφ/dn=R·(c1-c2) being c1 and c2 the concentration 
(of the corresponding species) in domains 1 and 2 respectively. 
If resistance is null, contact is perfect.

Options available in PDE's solver module

Active variable: individual check buttons are available for each 
defined generic variable. The check button must be selected in 
order to activate the contact for the corresponding variable. If a 
check button is not selected, an infinite resistance is assumed to 
exist for that particular variable.

Resistance: Resistance term (R), defining variables flow through 
the contact as dφ/dn=R·(φ1-φ2) being φ1 andφ2 the concentration 

(of the corresponding variables) in domains 1 and 2 respectively. 
If resistance is null, contact is perfect.

Options available in Mesh Deformation module

Activate Contact: Select to activate the contact between two solid 
domains for the mesh deformation algorithm. Such and option 
is only effective if the ByBodies mesh deformation type has been 
selected in the data tree as follows:

Modules data ► Mesh deformation ► Fluid mesh 
deformation ► ByBodies

3.5.2. Fluid-Fluid Contact
Fluid-Fluid Contact boundaries identify a contact with 
continuity of the corresponding field between two disjoint fluid 
domains. Contact properties can be defined and assigned to 
lines (2D Plane & 2D Asisymmetric analysis) or surfaces (3D 
analysis) or boundary meshes. Three contact types are 
available:

 Interpolating contact: this type of contact concerns the 
tradicional contact algorithm. Contact surfaces must be 
coincident, although resulting contact meshes may be 
different in each side.
 Distance contact: this type of contact allows to correlate the 
results between two surfaces which are not truly in contact 
and that can be even moving apart from each other.

 Periodic contact: this type of contact is used to enforce 
periodic boundary conditions. When this type of contact is 
selected, X/Y/Z Distance fields become active so that 
distance functions can be defined in order to specify the 
periodicity of the contact.

Options available in Fluid Flow module

Activate contact: if this check button is activated, the contact 
algorithm will enforce continuity in both, velocity and pressure, 
across or between fluid domains.

Activate contact (only velocity): if this check button is activated, 
the contact algorithm will enforce continuity only in velocity 
across or between fluid domains.

Note that these two options are mutually exclusive.

Options available in Heat Transfer module

Activate contact: thermal contact is only active if the check-
button is selected. If the check-button is not selected, thermal 
resistance is assumed to be infinite.

Thermal resistance: thermal resistance of the temperature 
contact between fluid materials. If thermal resistance is null, 
contact is perfect. Thermal resistance R of an homogeneous 
layer of a solid material, can be calculated as R = e / k, being e 
the thickness of the layer, and k the thermal conductivity of the 
material.

Options available in Species Advection module

Active species: individual check buttons are available for each 
existing specie. The check button must be selected in order to 
activate the contact for the corresponding specie. If a check 
button is not selected, an infinite resistance is assumed to exist 
for that particular specie.

Resistance: Resistance term (R), defining species flow through 
the contact as dφ/dn=R·(c1-c2) being c1 and c2 the concentration 
(of the corresponding species) in domains 1 and 2 respectively. 
If resistance is null, contact is perfect.
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Options available in PDE's solver module

Active variable: individual check buttons are available for each 
defined generic variable. The check button must be selected in 
order to activate the contact for the corresponding variable. If a 
check button is not selected, an infinite resistance is assumed to 
exist for that particular variable.

Resistance: Resistance term (R), defining variables flow through 
the contact as dφ/dn=R·(φ1-φ2) being φ1 andφ2 the concentration 
(of the corresponding variables) in domains 1 and 2 respectively. 
If resistance is null, contact is perfect.

Options available in Mesh Deformation module

Activate Contact: Select to activate the contact between two fluid 
domains for the mesh deformation algorithm. Such and option 
is only effective if the ByBodies mesh deformation type has been 
selected in the data tree as follows:

Modules data ► Mesh deformation ► Fluid mesh 
deformation ► ByBodies

3.5.3. Fluid-Solid Contact
Fluid-Solid Contact boundaries identify a contact with 
continuity of the corresponding field between solid and fluid 
domains. Contact properties can be defined and assigned to 
lines (2D Plane & 2D Asisymmetric analysis) or surfaces (3D 
analysis) or boundary meshes. Three contact types are 
available:

 Interpolating contact: this type of contact concerns the 
tradicional contact algorithm. Contact surfaces must be 
coincident, although resulting contact meshes may be 
different in each side.
 Distance contact: this type of contact allows to correlate the 
results between two surfaces which are not truly in contact 
and that can be even moving apart from each other.

 Periodic contact: this type of contact is used to enforce 
periodic boundary conditions. When this type of contact is 
selected, X/Y/Z Distance fields become active so that 
distance functions can be defined in order to specify the 
periodicity of the contact.

Options available in Fluid Flow module

Activate contact: if this check button is activated, the contact 
algorithm will enforce continuity in both, velocity and pressure, 
across or between fluid and solid domains.

Activate contact (only velocity): if this check button is activated, 
the contact algorithm will enforce continuity only in velocity 
across or between fluid and solid domains.

Note that these two options are mutually exclusive.

Options available in Heat Transfer module

Activate contact: thermal contact is only active if the check-
button is selected. If the check-button is not selected, thermal 
resistance is assumed to be infinite.

Thermal resistance: thermal resistance of the temperature 
contact between solid and fluid materials. If thermal resistance 
is null, contact is perfect. Thermal resistance R of an 
homogeneous layer, can be calculated as R = e / k, being e the 
thickness of the layer, and k the thermal conductivity of the 
material.

Options available in Species Advection module

Active species: individual check buttons are available for each 
existing specie. The check button must be selected in order to 
activate the contact for the corresponding specie. If a check 
button is not selected, an infinite resistance is assumed to exist 
for that particular specie.

Resistance: Resistance term (R), defining species flow through 
the contact as dφ/dn=R·(cs-cf) being cs and cf the concentration 
(of the corresponding species) in solid and fluid domains 
respectively. If resistance is null, contact is perfect.

Options available in PDE's solver module

Active variable: individual check buttons are available for each 
defined generic variable. The check button must be selected in 
order to activate the contact for the corresponding variable. If a 
check button is not selected, an infinite resistance is assumed to 
exist for that particular variable.

Resistance: Resistance term (R), defining variables flow through 
the contact as dφ/dn=R·(φs-φf) being φsandφf the concentration 
(of the corresponding variables) in solid and fluid domains 
respectively. If resistance is null, contact is perfect.

3.5.4. Fluid-Boundary Contact

It allows to define a contact among a fluid and surfaces where 
fluid could be in contact. Three contact types are available:

 Sticking: fluid will not slide on the surface.

 Frictionless: fluid will slide on the surface without friction.
 Coulomb: fluid will slide on the surface with a coulomb 
friction. Friction coefficient must be defined.

Normals of boundary surface must point to the side of surface 
where fluid will contact.
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Normals of boundary surface must point to the fluid domain

3.6. Materials

3.6.1. Fluids and Solids
Materials are groups of physical properties and other data that 
identify a material, fluid or solid to be used in the analysis.

For any problem that needs definition of materials, there is a 
database of existing materials that can be assigned to entities:

Materials ► Physical properties ► Fluid|Solid

The user can also create new materials derived from the 
existing ones and assign them as well:

Materials ► Physical properties ► Generic Fluid|Solid

To create a new Material, press "CreateNew Material" in the 
contextual menu of the abovementioned Materials > Physical 
Properties > Generic Fluid | Solid option, write a new name 
and change some of its properties. By pressing Ok, a new 
Material is created taking an existing one as a base Material, 
which means that the new Material will have the same fields as 
the base one. All new values for the fields can be entered when 
defining the new material. It is also possible to redefine existing 
Materials by entering new values directly in the fields.

Remarks:
If a mesh has already been generated and new materials 
are assigned to the geometry or some of the existing ones 
are removed, it is necessary to mesh again.

In this section only the main Materials will be presented. 
Therefore, Materials with other names can be found in the 
Materials database. Anyhow, all these Materials will be 
based on the ones shown here (i.e. they will have the same 
properties fields).

Options available in Fluid Flow module

Fluid Model: this is the fluid model assumed to govern the 
behavior of the material. The fluid model must be one of 
Incompressible, Slightly Compressible, Barotropic, Incompressible 
Ideal Gas or Ideal Gas. But the actual available options will 
depend on the selected Flow Solver Model. The Flow Solver Model 
in turn can be selected using the following option of the data 
tree

Fluid Dynamics and Multiphysics data ► Fluid Solver ► Flow 
Solver Model

Density: Density of the fluid. It may be a constant or a function 
(always greater than zero). Units of the density may be defined 
in the menu next to the density entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Viscosity: Viscosity of the fluid. It may be a constant or a function 
(always greater than zero). Units of the viscosity may be defined 
in the menu next to the viscosity entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Create function for viscosity: Tdyn offers the capability to analyse 
non-Newtonian fluids. The different models implemented can 
be choosen in the drop-down list of the window appearing by 
clicking on the button to the right of the viscosity entry of the 
generic non-Newtonian material (or any other existing non-
Newtonian fluid) in the materials database.

Power law model: if choosen in the drop-down list of the viscosity 
model window, a non-Newtonian flow will be modelled 
according to the power law model in (Bird 1976).

Herschel-Bulkley model: this is a three constant simple 
generalization of the Bingham plastic model to embrace the 
non-linear flow curve (see TdynCFD+HT theory manual for 
details).

Carreau model (for pseudo-plastics): when there are significant 
deviations from the power-law model at very high and very low 
shear rates, it is necessary to use a model that accounts for the 
limiting values of viscosities (μo and μ∞). The Carreau model 
(Carreau 1972) attemps to describe a wide range of fluids by the 
establishment of a curve-fit to piecetogether functions for both 
Newtonian and Shear-thinning (n<1) non-Newtonian laws.

Cross model: four parameters model in (Cross 1965) which has 
gained popularity to describe the behavior of viscosity in the 
slow-shear-rate range.

Consistency index (k): the consistency index of the power law 
model is a measure of the average viscosity of the fluid.

Time constant (λ): time constant to be used in the Carreau 
viscosity model (see TdynCFD+HT theory manual for details on 
the Carreau model).

Natural time (λ): inverse of the shear rate at which the fluid 
changes from Newtonian to power-law behavior in the Cross 
model (see TdynCFD+HT theory manual for details).

Power-Law index (n): power law index of the power-law model. 
This value actually determines the class of the fluid. n = 1 
corresponds to a Newtonian fluid; n > 1 corresponds to a shear-
thickening (dilatant) fluid; n < 1 corresponds to a shear-thinning 
(pseudo-plastic) fluid.

μ Min.: minimum viscosity limit to be used in the power-law 
model.

μ Max.: maximum viscosity limit to be used in the power-law 
model.

μ0: zero-shear viscosity limit used in both the, Carreau model 
and the Cross model.

μ∞: infinite-shear viscosity limit used in both, the Carreau model 
and the Cross model.

Yield stress threshold (τo): yield stress in the Herschel-Bulkley 
model.
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Zero-shear viscosity (μo): yielding viscosity (o zero-shear viscosity) 
in the Herschel-Bulkley model.

Temperature dependent: this flag is used to choose between 
shear-rate dependent and shear-rate plus temperature 
dependent model.

Reference temperature (Tα): reference temperature to be used for 
shear-rate and temperature dependent non-newtonian fluids 
(see TdynMPH theory manual for details on the Arrhenius law 
controlling the temperature dependence of vsicosity).

Activation energy/R(α): ratio of the activation energy to the 
thermodynamic constant for a shear-rate and temperature 
dependent non-newtonian fluid (see TdynMPH theory manual 
for details on the Arrhenius law controlling the temperature 
dependence of vsicosity).

Compressibility: Compressibility factor of the fluid, α, defined as 
the inverse of the square of the speed of the sound in the fluid. 
Here it can be defined by a constant or a function (always 
greater than zero). This option is only available for Slightly 
Compressible or Barotropic fluid models. Units of the 
compressibility may be defined in the menu next to this entry. It 
is possible to define additional units by entering new 
dimensionally correct units in the box (see Units Syntax section 
for further information).

Remarks:
Slightly compressible fluid model is defined by the 
following pressure/density relationship: Δρ=α·Δp, where 
α=1/c2 is the compressibility of the fluid, being c the speed 
of sound in the medium. 
Barotropic fluid model is defined by the following 
pressure/density relationship: p=A·ργ where the factor γ is 
related with the speed of sound in the medium by c=ρ/(γ·p). 

Molar Mass: Molar mass of the gas. This option is only available 
for Incompressible Ideal Gas or Ideal Gas fluid models.

Units of the molar mass may be defined in the menu next to the 
this entry. It is possible to define additional units by entering 
new dimensionally correct units in the box (see Units Syntax 
section for further information).

Darcy's law Resistance Matrix: Coefficients of the matrix defining 
permeability resistance of the flow in a porous media (Darcy's 
law). Due to this effect, a pressure drop given by 

δpi = -(μ·D·v)/vi · δxi

will be added to the velocity momentum equations. Where δpi is 
the pressure drop for the momentum equation in the xi 
direction, μ is the fluid viscosity, D is the Darcy's law Resistance 
Matrix, and v is the velocity vector of components vi.

Units of the Darcy's law Resistance Matrix may be defined in the 
menu next to the these entries. 

Acceleration Field: External acceleration vector acting on fluid. 
May be defined by constants or functions. 

Remarks:
It is recommended to insert functions with a smoothed 
start up for this additional acceleration. Otherwise it can 
create oscillations in the solution.
Vertical field will be added to the vertical component of the 
gravity, as an additional acceleration.

Options available in Heat Transfer module

Density: Density of the fluid. It may be a constant or a function 
(always greater than zero). Units of the density may be defined 
in the menu next to the density entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Remarks:

Density entry in this window is the same for Fluid 
Flow and Heat Transfer data. When both modules 
are selected if Density entry is changed in Fluid 
Flow data, it will be automatically updated in Heat 
Transfer data.

Specific Heat: Specific heat (CP) of the fluid. It may be a constant 
or a function (always greater than zero). Units of the specific 
heat may be defined in the menu next to this entry. It is possible 
to define additional units by entering new dimensionally correct 
units in the box (see Units Syntax section for further 
information).

Thermal Conductivity: Thermal conductivity (k) of the fluid. It may 
be a constant or a function (always greater than zero). Units of 
the thermal conductivity may be defined in the menu next to 
this entry. It is possible to define additional units by entering 
new dimensionally correct units in the box (see Units Syntax 
section for further information).

Floatability: Floatability effect of a fluid (Boussinesq type) due to 
small changes of density. May be a constant or a function. This 
property controls the buoyancy effect due to the variations of 
temperature in the fluid. Standard effects are modelled by 
inserting the function β·(T-T0) where β is the volume expansion 
of the fluid and T0 is the temperature of reference. In this case, 
buoyancy effect will be taken into account by a variation of 
density of the fluid proportional to the temperature (ρ = ρo· β·(T-
T0)). This term is undimensional.

Remarks:

Note that Floatability entry can also accept non-
linear terms.

Heat Source Field: Volumetric heat source in the fluid. May be a 
constant or a function. Units of the heat source field may be 
defined in the menu next to this entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Heat Reaction Field: Volumetric heat reaction in the fluid. This 
entry will be added as a reactive term in the system of 
equations (i.e. a source term depending linearly to the 
temperature). May be a constant or a function. Units of the heat 
reaction field may be defined in the menu next to this entry. It is 
possible to define additional units by entering new 
dimensionally correct units in the box (see Units Syntax section 
for further information).

Options available in Free Surface (ODDLS) 
module
Primary Phase: Current material will be identified as primary 
phase for the ODDLS free surface analysis. The primary phase is 
the phase of interest of the analysis. Special care is taking into 
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account in order to improve the accuracy of the solution 
obtained for the primary phase.

Secondary Phase: Selected material will be identified as 
secondary phase for the ODDLS free surface analysis.

Surface Tension: Surface tension between primary and 
secondary phase.

Units of the surface tension can be defined in the menu next to 
the Surface Tension entry. It is possible to define additional units 
by entering new dimensionally correct units in the box (see 
Units Syntax section for further information).

3.6.2. Species

Species Materials Data

Fluid/Solid Props. tabs of Species Edition (see Figure 8) are split 
in two frames. Upper frame shows the standard equation that is 
solved for the species (equation is different in Fluids and Solids). 
Lower frame shows the entries of the coefficients of the 
differential equation of the selected species. 

Species definition window

Options available are shown next:

Advection f1: Advection factor of the selected species (see Figure 
8). This property may be defined by a constant or a function. 
Advection factor is undimensional.

Diffusion (Fick´s Law, in Fluids. For Solids, it is a matrix) f2: Total 
diffusion of the selected species (see Figure 8). Please note that 
this value must include the turbulent and physical diffusion of 
species. This property may be defined by a constant or a 
function. Units of the total diffusion field may be defined in the 
menu next to this entry. It is possible to define additional units 
by entering new dimensionally correct units in the box (see 
Units Syntax section for further information).

Degradation f3: Reactive term of the selected species (see Figure 
8). This property may be defined by a constant or a function. 
Units of the reactive field may be defined in the menu next to 
this entry. It is possible to define additional units by entering 
new dimensionally correct units in the box (see Units Syntax 
section for further information).

Source f4: Source of concentration of the selected species (see 
Figure 8).This property may be defined by a constant or a 
function. Units of the source of concentration field may be 
defined in the menu next to this entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Species General Data

Options below have to be defined for every existing Species.

Max limit: Maximum acceptable value of the species 
concentration.

Min limit: Maximum acceptable value of the species 
concentration.

Convergence norm: Euclidean norm of species concentration 
used to check convergence in the non-linear iteration loop.

Inner iterations: Number of iterations of the inner (nonlinear) 
species concentration eq. solver (performed every external 
iteration).

Advect stability: Order of the FIC advection stabilisation term in 
the species concentration equation. Three available options are 
Auto, 4th_Order and 2nd_Order.

Remarks: 

The 4th order term increases the accuracy of the 
solution and is recommended in most of the cases. 
However in some problems it may cause 
instabilities.

Auto mode will automatically switch between 4th 
and 2nd order scheme, depending on the 
smoothness of the solution.

Stability control: Level of control of instabilities (0 means Off). If 
instabilities are found in the species concentration field when 
using the 2nd_Order Advect Stabilisation, first try to reduce Time 
Increment, then to increase this value. Note that high values 
may cause over-diffusive results.

Volume conservation: If this box is selected, conservation of 
species concentration will be enforced.

Species Turbulence Data

Schmidt number: Schmidt number used to include turbulence 
effects in the species calculations.

Species Initial and Conditional Data

Concentration Field: Initial (t=0) and reference concentration 
field. May be a constant or a function (see Function Syntax 
section for further information).

Remarks:

If any Concentration Field condition has been 
assigned to any entity within this material, this 
field will be used as a base to calculate boundary 
conditions. If the corresponding Fix Initial field has 
been marked, the concentration of the species will 
be fixed to the initial value (evaluated in t = 0) of 
the function inserted here.

If the corresponding Fix Field has been marked, the 
concentration of the species will be fixed to the 
value (for every time step) of the function inserted 
here. It is possible to define transient boundary 
conditions for the concentration of the species this 
way.
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Species Conditional: Conditional function used to define 
Conditional Concentration boundary conditions. Conditional 
Concentration boundary conditions will only be applied if the 
Species Conditional field value (resulting of the evaluation of the 
given function) is greater than 0. If the evaluation of the Species 
Conditional field results in a value less than 0, the boundary 
conditions will not be applied. If the value is 0, the boundary 
condition will be applied only if it was applied in the previous 
time step.

3.6.3. PDEs Variables

Variables Materials Data
Fluid/Solid Props. tabs of PDE's Variables Edition (see Figure 9) 
are split in two frames. Upper frame shows the standard 
equation that is solved for the species (equation is different in 
Fluids and Solids). Lower frame shows the entries of the 
coefficients of the differential equation of the selected species. 

Options available for Fluid Props. are shown next:

ft1: Temporal factor of the selected variable (see Figure 9). This 
property may be defined by a constant or a function. Units of 
the temporal factor field may be defined in the menu next to 
this entry. It is possible to define additional units by entering 
new dimensionally correct units in the box (see Units Syntax 
section for further information).

PDEs Variables definition window

fc1: Advection factor of the selected variable (see Figure 9). This 
property may be defined by a constant or a function. Units of 
the advection factor field may be defined in the menu next to 
this entry. It is possible to define additional units by entering 
new dimensionally correct units in the box (see Units Syntax 
section for further information).

f2: Total diffusion of the selected variable (see Figure 9). Please 
note that this value must include the turbulent and physical 
diffusion of variable. This property may be defined by a constant 
or a function. Units of the total diffusion field may be defined in 
the menu next to this entry. It is possible to define additional 
units by entering new dimensionally correct units in the box 
(see Units Syntax section for further information).

f3: Reactive term of the selected variable (see Figure 9). This 
property may be defined by a constant or a function. Units of 
the reactive field may be defined in the menu next to this entry. 
It is possible to define additional units by entering new 
dimensionally correct units in the box (see Units Syntax section 

for further information).

f4: Source of the selected variable (see Figure 9).This property 
may be defined by a constant or a function. Units of the source 
field may be defined in the menu next to this entry. It is possible 
to define additional units by entering new dimensionally correct 
units in the box (see Units Syntax section for further 
information).

Options available for Solid Props. are shown next:

f1: Temporal factor of the selected variable. This property may 
be defined by a constant or a function. Units of the temporal 
factor field may be defined in the menu next to this entry. It is 
possible to define additional units by entering new 
dimensionally correct units in the box (see Units Syntax section 
for further information).

f2: Total diffusion matrix of the selected variable. Please note 
that this value must include the turbulent and physical diffusion 
of variable. This property may be defined by a constant or a 
function. Units of the total diffusion field may be defined in the 
menu next to this entry. It is possible to define additional units 
by entering new dimensionally correct units in the box (see 
Units Syntax section for further information).

Remarks:

If only one value of the diffusion of the variable is 
available, it should be inserted in the diagonal 
terms of the matrix.

f3: Reactive term of the selected variable. This property may be 
defined by a constant or a function. Units of the reactive field 
may be defined in the menu next to this entry. It is possible to 
define additional units by entering new dimensionally correct 
units in the box (see Units Syntax section for further 
information).

f4: Source of the selected variable.This property may be defined 
by a constant or a function. Units of the source field may be 
defined in the menu next to this entry. It is possible to define 
additional units by entering new dimensionally correct units in 
the box (see Units Syntax section for further information).

Variables General Data
Options below have to be defined for every existing PDE's 
Variables.

Max limit: Maximum acceptable value of the variable field.

Min limit: Maximum acceptable value of the variable field.

Convergence norm: Euclidean norm of variable field used to 
check convergence in the non-linear iteration loop.

Inner iterations: Number of iterations of the inner (nonlinear) 
variable eq. solver (performed every external iteration).

Variable stabilisation: Order of the FIC advection stabilisation 
term in the variable equation. Three available options are Auto, 
4th_Order and 2nd_Order.

Remarks: 

The 4th order term increases the accuracy of the solution 
and is recommended in most of the cases. However in 
some problems it may cause instabilities.

Auto mode will automatically switch between 4th and 2nd 
order scheme, depending on the smoothness of the 
solution.



Compass - http://www.compassis.com
33

Tdyn CFD+HT reference manual

Stability control: Level of control of instabilities (0 means Off). If 
instabilities are found in the variable field when using the 
2nd_Order Advect Stabilisation, first try to reduce Time Increment, 
then to increase this value. Note that high values may cause 
over-diffusive results.

Volume conservation: If this check-button is selected, 
conservation of variable field will be enforced.

Variables Initial and Conditional Data
Variable Field: Initial (t=0) and reference variable field. May be a 
constant or a function (see Function Syntax section for further 
information). There is one Variable Field entry for every variable.

Remarks:

If any Variable Field condition has been assigned 
to any entity, this field will be used as a base to 
calculate boundary conditions. If the 
corresponding Fix Initial field has been marked, 
the value of the variable will be fixed to the initial 
value (evaluated in t = 0) of the function inserted 
here.

If the corresponding Fix Field has been marked, the 
value of the variable will be fixed to the value (for 
every time step) of the function inserted here. It is 
possible to define transient boundary conditions 
for the variables this way.

Variable FuncCond: Conditional function used to define 
Conditional Variable boundary conditions. Conditional 
Variable boundary conditions will only be applied if the Variable 
FuncCond field value (resulting of the evaluation of the given 
function) is greater than 0. If the evaluation of the Variable 
FuncCond field results in a value less than 0, the boundary 
conditions will not be applied. If the value is 0, the boundary 
condition will be applied only if it was applied in the previous 
time step. There is one Vars. FuncCond field for every variable.

Initialize variable: if this check-button is selected, the selected 
variable is re-initiated to a signed distance every time step.
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3.7. Utilities
In this section, several specific utilities of Tdyn CFD+HT are 
introduced. 

Forces on Boundaries (Pre-processor menu option Utilities > 
Forces on Boundaries, post-processor menu option View 
Results > Forces on Boundaries) shows the last value of the 
forces on the defined boundaries (see Fluid and Solid Boundaries 
reference for further information). The components of the 
acting force on the boundary are:

Pressure forces: force resulting of the integration of the 
pressure on the boundary.

Pressure moments: moments of the pressure forces, evaluated 
in the center of gravity of the boundary.

Static pressure force: force resulting of the integration of the 
fluid static force on the boundary (note that if the total pressure 
algorithm is selected, this component is null).

Static pressure moments: moments of the static pressure 
forces, evaluated in the center of gravity of the boundary.

Viscous forces: force resulting of the integration of the fluid 
traction on the boundary.

Viscous moments: moments of the viscous forces, evaluated in 
the center of gravity of the boundary.

Total forces: total forces acting on the boundary.

Total moments: total moments acting on the boundary, 
evaluated in the center of gravity of the boundary.

Remarks:

The units of the forces are based on the OutPut 
Units defined by the user (Newtons by default).

Forces Graph: (Pre-processor menu option Utilities > Forces 
graph, post-processor menu option View Results > Forces 
graph) shows a graph of the evolution of the forces on the 
defined boundaries (see Fluid and Solid Boundaries reference for 
further information).

Motions Graph: (Menu option Utilities > Motions graph, post-
processor menu option View Results > Motions graph) shows 
a graph of the evolution of the movements on the defined 
boundaries (see Fluid and Solid Boundaries reference for further 
information).

Norms Graph: Time evolution graph of the different 
convergence norms involved in the problem. For each norm, 
normalized values of the increment ratios of the corresponding 
variable are plotted against time. When all variable increments 
become smaller than the Steady State Norm the simulation 
stops.

4. Free Surface Analysis with Transpiration 
Method
The Transpiration Free Surface Analysis of Tdyn CFD+HT has 
been specially designed for the simulation of the towing of 
ships test. For other free surface applications, the Overlapping 
Domain Decomposition Level Set (ODDLS) method should be 
used. Please refer to the tutorial examples of the ODDLS 
method of Tdyn CFD+HT for further information. 

In particular, standard naval problems including ship movement 

or analysis of complex transom stern flows can be easily 
analysed using ODDLS method. However, Transpiration method 
approach can be still interesting in some cases where capturing 
a small perturbation of the free surface is required. For those 
cases, the next sections present some specific tools of the 
Transpiration method for simulation of dynamic sinkage and 
trim effects and transom stern flows.

4.1. Stern flow modelling in transpiration 
problem

It is well known that the standard solution of the advective 
equations as the free surface requires the imposition of 
Dirichlet conditions at the inlet boundaries.

Experimental analyses reveal that transom stern flow, occurring 
at a sufficient high speed, shows a local discontinuity in the 
wave elevation field. In those cases, the standard solution of the 
free surface equation close to this region is inconsistent with 
the convective nature of this equation. The trial of direct solving 
the free surface equation in this case results in instability in the 
wave height close to the transom region. This instability is 
found experimentally for low speeds, but the flow at a sufficient 
high speed is more stable and cannot be reproduced by using 
the standard techniques.

The conclusion of the above discussion is that it is necessary to 
determine and apply boundary conditions adequate for the free 
surface solution on the transom boundary. The obvious solution 
to this problem is to fix both the free surface elevation β and its 
derivative along the corresponding streamline. Its values will be 
approximately given by the transom position and the surface 
gradient. This option is available in Tdyn CFD+HT through the 
prescription of the wave elevation in the transom boundary (see 
Fix Beta conditions). However the direct imposition of the 
mentioned values can influence the transition between the 
transom flow and the lateral flow, resulting in inaccurate wave 
maps.

The solution developed in Tdyn CFD+HT, extends the free 
surface below the floater. The necessary Dirichlet boundary 
conditions imposed at the inlet of the domain are sufficient to 
achieve the well-possessed properties of the problem. It is 
interesting to note, that this imposition is not ad hoc, since the 
free surface equation have to be accomplished also in the 
wetted surface below the floater. Obviously proceeding this way 
will remain valid both for the wetted transom and for the dry 
transom flows and may also be applied to floaters with regular 
stern. Unfortunately, in the latter case, a very fine definition of 
the mesh is required in some cases, in order to capture the 
discontinuities that may appear in the wave elevation field.

In order to simplify the application of the above ideas, Tdyn 
CFD+HT includes a methodology to automatically detect when is 
necessary extend the free surface below the floater. The 
method is based on calculating the angle between the floating 
line and the local velocity. Only if this angle is greater than a 
given value (inserted in the field SternC Angle), the 
corresponding elements of the transom edge will have the 
necessary boundary condition.

5. Units Syntax

The default units system for Tdyn is the International System 
(IS). They are:

Time in seconds (s)
Lengths in meters (m)

Masses in Kilograms (kg)

Forces in Newton (N)
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A derived unit is Pascal (Pa), where Pa=N/m2

These units can be changed in several parts of the program. 
Every window that asks for data for constraints, loads or 
properties has a field to choose the units for that window. The 
chosen units are only applicable in the data attached to it in the 
same window.

The units in which are expressed the coordinates of the 
geometrical model are chosen in the General data window:

Data -> General data -> Units -> Geometry units

Other predefined units that can be chosen are:

Forces: Kilogram-force (kp)

Lengths: centimeter (cm), millimeter (mm)

Different units can be selected using "More Units" option in the 
unit selection-box. A selection window is opened and selected 
units are inserted to create new ones:

These units can also be edited by selecting "Edit mode>Edit 
field" option in the unit selection-box. In edition mode new 
units can be written. After writing new units, they can be 
checked by selecting "Edit mode>check" option, if an edited 
unit is correctly written it will be signalled in green colour, if the 
new unit is wrongly written it will be signalled in red colour. 
Different operations can be inserted by selecting "Edit 
mode>Insert".

Result units can be expressed as:

N-m-kg where:

Displacements are in m

Velocities are in m/s

Accelerations are in m/s2

Strengths are in N/m or N·m/m

Stresses are in Pa= N/m2

N-mm-kg where:

Displacements are in mm

Velocities are in mm/s

Accelerations are in mm/s2

Strengths are in N/mm or N·mm/mm

Stresses are in N/mm2

Kp-cm-utm where:

Displacements are in cm

Velocities are in cm/s

Accelerations are in cm/s2

Strengths are in Kp/cm or Kp·cm/cm

Stresses are in Kp/cm2

KN,m,Mpa where:

Displacements are in m

Velocities are in m/s

Accelerations are in m/s2

Strengths are in kN/m or kN·m/m (kN=103 N)

Stresses are in Mpa=106 Pa

Note that the units in this system does not form a 
compatible system.

6. Create Report Tool

Tdyn CFD+HT includes a tool to comfortably create basic reports 
of the analysis, including text, images and graphs. This tool can 
be accessed both in the pre and post-processing part, through 
the menu option Reports.

'Open' creates an interactive report of the model.

The following commands are available in the 'Reports' menu:

Open: creates the report of the model if it does not exist. 
Two options are shown: 

'Add default report pages': The most 
relevant pages are automatically created.

'Do not add. Only for notes': None of the 
pages are created, they can be created 
manually at any time during the work.

Delete: deletes the existing report.

Add automatic pages: the most relevant pages are 
automatically created or updated if they already exist.

Add current view: current view can be added to the report in 
a new or an existing page.

Lognoter has been chosen for the report creation. Lognoter is a 
software to handle information organized by pages, the 
objective is to make easier the storage and management of 
information, notes and model information.

Lognoter can store textual formatted data, images and files all 
in the same place, providing a user friendly work environment.

7. Tcl Extension
Tdyn CFD+HT can be extended by using the Tcl scripting 
language. Tcl, or the "Tool Command Language", is a very 
simple, open-source-licensed programming language. Tcl 
provides basic language features such as variables, procedures, 
and control, and it runs on almost any modern OS, such as Unix, 
MacOS and Windows computers. But the key feature of Tcl is its 
extensibility.

You may find further information on Tcl at:

http://wiki.tcl.tk/969

http://wiki.tcl.tk/969
http://wiki.tcl.tk/969


Compass - http://www.compassis.com
36

Tdyn CFD+HT reference manual

Tdyn distribution includes a basic installation of Tcl, that allows 
to efficiently implement new capabilities in Tdyn. However full 
Tcl installation provides many tool-kits and libraries that can 
help in the implementation of above mentions Tdyn extensions. 

The full Tcl version can be downloaded from:

http://www.activestate.com/activetcl/

Finally, you can use Ramdebbuger for editing and debugging 
Tcl code. Ramdebugger is free to use and can be downloaded 
from:

http://www.compassis.com/ramdebugger

7.1. Initiating Tcl extension

Tdyn CFD+HTTcl extension is initiated by selecting the Use Tcl 
external script option available in the Fluid dynamics data > 
Other > Tcl data page. If the check-box is selected, the Tcl 
extension of Tdyn CFD+HT is activated. The entry may indicate a 
Tcl script to be interpreted during Tdyn CFD+HT execution.

7.2. Tdyn Tcl event procedures

The Tcl script used for the Tdyn extension can optionally 
implement some of these Tcl event procedures (as well as other 
user-defined procedures). These procedures (listed below) are 
automatically called by Tdyn CFD+HT during execution, when 
the Tcl interface is activated. Their syntax corresponds to the 
standard Tcl language.

TdynTcl_InitiateProblem

This procedure is called at the beginning of the execution, once 
all the data structures have been created.

TdynTcl_FinishProblem

This procedure is called at the end of the execution of the 
current problem.

TdynTcl_StartNewFluidStep

This procedure is called when a new time step is started in fluid 
domain.

TdynTcl_StartNewSolidStep

This procedure is called when a new time step is started in solid 
domain.

TdynTcl_FinishFluidStep

This procedure is called when a time step is finished in fluid 
domain.

TdynTcl_FinishSolidStep

This procedure is called when a time step is finished in solid 
domain.

TdynTcl_FinishStep

TdynTcl_FinishStep is called once the current step is finished.

TdynTcl_AssembleFluidMomentumX, 
TdynTcl_AssembleFluidMomentumY, 
TdynTcl_AssembleFluidMomentumZ

This procedure is invoked once the X/Y/Z component of the 
velocity momentum equation in the fluid domain has been 
assembled. It allows modifying Navier Stokes equations, for 
example by imposing imposing boundary conditions for every 

component of the velocity vector.

TdynTcl_AssembleSolidMomentumX, 
TdynTcl_AssembleSolidMomentumY, 
TdynTcl_AssembleSolidMomentumZ

This procedure is invoked once the X/Y/Z component of the 
velocity momentum equation in the solid domain has been 
assembled. It allows modifying Navier Stokes equations, for 
example by imposing boundary conditions for every component 
of the velocity vector.

TdynTcl_AssembleFluidPressure

This procedure is invoked once the continuity equation of the 
Navier Stokes equations in fluid domain has been assembled. It 
allows modifying Navier Stokes equations, for example by 
imposing boundary conditions for the pressure.

TdynTcl_AssembleSolidPressure

This procedure is invoked once the continuity equation of the 
Navier Stokes equations in solid domain has been assembled. It 
allows modifying Navier Stokes equations, for example by 
imposing boundary conditions for the pressure.

TdynTcl_AssembleFluidODDLSPressure

This procedure is invoked once the continuity equation of the 
Navier Stokes equations for ODD level set solver has been 
assembled. It allows modifying Navier Stokes equations, for 
example by imposing boundary conditions for the pressure.

TdynTcl_AssembleFluidTemperature

This procedure is invoked once the temperature equation for 
the fluid has been assembled. It allows modifying temperature 
equation, for example by imposing boundary conditions for the 
fluid temperature field.

TdynTcl_AssembleSolidTemperature

This procedure is invoked once the temperature equation for 
the solid has been assembled. It allows modifying temperature 
equation, for example by imposing boundary conditions for the 
solid temperature field.

TdynTcl_AssembleFluidSpecies index

This procedure is invoked once the equation for the fluid 
species index has been assembled. The index of the species is 
sent to the procedure in the argument index. It allows 
modifying species equation, for example by imposing boundary 
conditions for the fluid species concentration field.

TdynTcl_AssembleSolidSpecies index

This procedure is invoked once the equation for the solid 
species index has been assembled. The index of the species is 
sent to the procedure in the argument index. It allows 
modifying species equation, for example by imposing boundary 
conditions for the solid species concentration field.

TdynTcl_AssembleFluidPhiVariable index

This procedure is invoked once the equation for the fluid phi 
variable defined by the index has been assembled. The index of 
the phi variable is sent to the procedure in the argument index. 
It allows modifying variable equation, for example by imposing 
boundary conditions for the fluid variable field.

TdynTcl_AssembleSolidPhiVariable index

http://www.activestate.com/activetcl/
http://www.activestate.com/activetcl/
http://www.compassis.com/ramdebugger
http://www.compassis.com/ramdebugger
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This procedure is invoked once the equation for the solid phi 
variable defined by the index has been assembled. The index of 
the phi variable is sent to the procedure in the argument index. 
It allows modifying variable equation, for example by imposing 
boundary conditions for the solid variable field.

TdynTcl_CalculateDensityFromPressure

This procedure is invoked once the density field has been 
updated in incompressible or slightly compressible flows.

TdynTcl_CalculatePressureFromDensity

This procedure is invoked once the pressure field has been 
updated in fully compressible flows.

TdynTcl_AssembleFluidMeshDeformation

This procedure is invoked once the structures required to 
perform the fluid mesh deformation are ready.

TdynTcl_AssembleSolidMeshDeformation

This procedure is invoked once the structures required to 
perform the solid mesh deformation are ready.

TdynTcl_FinishFluidMeshDeformation

This procedure is invoked once the fluid mesh deformation is 
done.

TdynTcl_FinishSolidMeshDeformation

This procedure is invoked once the solid mesh deformation is 
done.

TdynTcl_MoveBody name

This procedure is invoked once the body movement of body 
name is evaluated. It allows re-defining body movement.

7.3. Managing Tdyn data from the Tcl script

From the Tcl procedures defined in the Tdyn CFD+HT extension, 
it is possible to access Tdyn CFD+HT internal data. This access is 
done by means of the following functions:

Remark:
Unless otherwise indicated the arguments and returning 
values are given in internal units (those defined in the user 
interface).
The conversion factor to any other units can be obtained 
calling the procedures TdynTcl_UnitsToInternal or 
TdynTcl_InternalToUnits.

TdynTcl_VecVal vec inode

Returns the value of the variable identified by vec, 
corresponding to the node inode. vec must be one of the vector 
names defined in the section Function Syntax. Example: 
TdynTcl_VecVal Tm 10

TdynTcl_SetVecVal vec inode newvalue

Set a single value of the vector identified by vec, corresponding 
to the node inode, to the value given by newvalue. vec must be 
one of the vector names defined in the section Function Syntax. 
Example: TdynTcl_SetVecVal Tm 10 0.0

TdynTcl_DVecVal vec inode idim

Returns the value of the derivative in the direction given by idim 
(1 -x-, 2 -y-, 3 -z-) of variable identified by vec, corresponding to 

the node inode. vec must be one of the vector names defined in 
the section Function Syntax. Example: TdynTcl_DVecVal Tm 10 2

TdynTcl_VecVals vec node_list

Returns a list with the values of the variable identified by vec, 
corresponding to the nodes in the list given by node_list. vec 
must be one of the vector names defined in the section Function 
Syntax. Example: TdynTcl_VecVals Tm [list 10 12 14]

TdynTcl_VecValsAverage vec node_list

Returns the average of the values of the variable identified by 
vec, corresponding to the nodes in the list given by node_list. 
vec must be one of the vector names defined in the section 
Function Syntax. Example: TdynTcl_VecValsAverage Tm [list 10 12 
14]

TdynTcl_Coord inode idim

Returns the coordinate idim (1 for x component, 2 for y 
component and 3 for z component) of the global node inode. 
The returning value is given in [m]. Example: TdynTcl_Coord 10 2

TdynTcl_Coords inode idom

Returns the coordinates of the node (1 for x component, 2 for y 
component and 3 for z component) of the node inode. The 
returning value is given in [m]. The index of the can be global 
(idom = 0) fluid (idom = 1) or solid (idom = 2). Example: 
TdynTcl_Coords 10 0

TdynTcl_NNode itype

Returns the number of nodes of the problem. If itype is 0, 
returns the total number of nodes, for itype 1 returns the 
number of fluid nodes and for itype 2 returns the number of 
solid nodes. Example: TdynTcl_NNode 0

TdynTcl_Dt

Returns the current time increment. The returning value is 
given in [s]. Example: TdynTcl_Dt

TdynTcl_Time

Returns the current physical time of the simulation (output 
time). The returning value is given in output units. Example: 
TdynTcl_Time

TdynTcl_PTime

Returns the current physical time of the simulation (output 
time). The returning value is given in [s]. Example: TdynTcl_PTime

TdynTcl_Step

Returns the current step of the simulation. Example: 
TdynTcl_Step

TdynTcl_Phase

Returns 0 for during the Initial Phase of the calculation (if any) 
and 1 otherwise. Example: TdynTcl_Phase

TdynTcl_FixSystemRow idof val

Fixes the idof row of the current system of equations to val. 
Example: TdynTcl_FixSystemRow 10 0.0

TdynTcl_DelSystemRow idof

Sets to 0.0 all the entries of the idof row of the current system of 
equations. Example: TdynTcl_DelSystemRow 10
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TdynTcl_GetSystemValue irow icol

Returns the (irow, icol) position of the current system. Example: 
TdynTcl_GetSystemValue 10 15

TdynTcl_SetSystemValue irow icol val

Prescribes to val the value of the (irow, icol) position of the 
current system. Example: TdynTcl_SetSystemValue 10 15 1.0

TdynTcl_GetRhs idof

Returns the idof value of the right hand side vector of the 
current system of equations. Example: TdynTcl_GetRhs 10

TdynTcl_SetRhs idof val

Sets the idof value of the right hand side vector of the current 
system of equations to val. Example: TdynTcl_SetRhs 10 0.0

TdynTcl_IsFluid inode

Returns 1 if the index inode corresponds to a fluid node and 0 
otherwise. Example: TdynTcl_IsFluid 10

TdynTcl_IsSolid idof

Returns 1 if the index inode corresponds to a solid node and 0 
otherwise. Example: TdynTcl_IsSolid 10

TdynTcl_GetFluidBodyNodes name

Returns a list containing the indexes of the nodes of the 
FluidBody name. Example: TdynTcl_GetFluidBodyNodes fluid_body

TdynTcl_GetFluidBodyElems name

Returns a list containing the connectivities of the elements of 
the FluidBody name. Example: TdynTcl_GetFluidBodyElems 
fluid_body

TdynTcl_GetSolidBodyNodes name

Returns a list containing the indexes of the nodes of the 
SolidBody name. Example: TdynTcl_GetSolidBodyNodes solid_body

TdynTcl_GetSolidBodyElems name

Returns a list containing the connectivities of the elements the 
SolidBody name. Example: TdynTcl_GetSolidBodyElems solid_body

TdynTcl_GetBodyArea name

Returns the area of the body identified by name. Example: 
TdynTcl_GetBodyArea Fluid_Body

TdynTcl_GetFluidNodes name

Returns a list of the nodes belonging to the fluid Material 
identified by name. If no argument is given all nodes are 
returned. Example: TdynTcl_GetFluidNodes Fluid

TdynTcl_GetSolidNodes name

Returns a list of the nodes belonging to the solid Material 
identified by name. If no argument is given all nodes are 
returned. Example: TdynTcl_GetSolidNodes Solid

TdynTcl_GetFluidElems name

Returns a list containing the connectivities of the elements of 
the Fluid Material name. Example: TdynTcl_GetFluidElems fluid

TdynTcl_GetSolidElems name

Returns a list containing the connectivities of the elements of 
the Solid Material name. Example: TdynTcl_GetSolidElems solid

TdynTcl_Message message type

Print the notice or error given by message. type can be "error", 
"warning" or "notice". Error messages will stop calculation. 
Example: TdynTcl_Message "Tcl script executed correctly" notice

TdynTcl_UnitsConversor value in_units out_units magnitude

Convert the value of the defined magnitude from the units 
given by in_units to the units given by out_units. Units format 
must follow the criteria defined in Units Syntax section. 
Example: TdynTcl_UnitsConversor 1.0 "\[m\]" "\[mm\]" Length

TdynTcl_SetGlobalVariable variable value

Set the Tdyn variable to the given value. Available variables are: 
Number_of_Steps, Max_Iterations, Total_Time, OutPut_Start, 
OutPut_Step, and Gravity_X/Y/Z. 

Example: TdynTcl_SetGlobalVariable OutPut_Start 10

TdynTcl_GetGlobalVariable variable

Returns the value of the given Tdyn variable. Available variables 
are: Number_of_Steps, Max_Iterations, Total_Time, 
OutPut_Start, OutPut_Step, and Gravity_X/Y/Z. 

Example: TdynTcl_GetGlobalVariable OutPut_Start

TdynTcl_GlobalToFluid inode

Converts the global node index inode to local index in fluid 
domain. Example: TdynTcl_GlobalToFluid 10

TdynTcl_GlobalToSolid inode

Converts the global node index inode to local index in solid 
domain. Example: TdynTcl_GlobalToSolid 10

TdynTcl_FluidToGlobal inode

Converts the local node index inode in fluid domain to global 
index. Example: TdynTcl_FluidToGlobal 15

TdynTcl_SolidToGlobal inode

Converts the local node index inode in solid domain to global 
index. Example: TdynTcl_SolidToGlobal 15

TdynTcl_SetFluidBodyVariable name variable value

Set the variable of fluid body name to the given value. Available 
variables are: AccelerationX/Y/Z, RAccelerationX/Y/Z, 
DisplacementX/Y/Z, RotationX/Y/Z. 

The value argument must be given in basic units 
[m],[s],[Kg],[N],[rad].

Example: TdynTcl_SetFluidBodyVariable fluid_body DisplacementX 
0.02

TdynTcl_GetFluidBodyVariable name variable

Returns the value of the variable of fluid body name. Available 
variables are: ForceX/Y/Z, MomentX/Y/Z, AccelerationX/Y/Z, 
RAccelerationX/Y/Z, DisplacementX/Y/Z, RotationX/Y/Z. The 
returning variables are in basic units [m],[s],[Kg],[N],[rad].

Example: TdynTcl_GetFluidBodyVariable fluid_body RAccelerationY

TdynTcl_SetSolidBodyVariable name variable value
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Set the variable of solid body name to the given value. Available 
variables are: AccelerationX/Y/Z, RAccelerationX/Y/Z, 
DisplacementX/Y/Z, RotationX/Y/Z. 

The value argument must be given in basic units 
[m],[s],[Kg],[N],[rad].

Example: TdynTcl_SetSolidBodyVariable solid_body DisplacementX 
0.02

TdynTcl_GetSolidBodyVariable name variable

Returns the value of the variable of solid body name. Available 
variables are: ForceX/Y/Z, MomentX/Y/Z, AccelerationX/Y/Z, 
RAccelerationX/Y/Z, DisplacementX/Y/Z, RotationX/Y/Z. The 
returning variables are in basic units [m],[s],[Kg],[N],[rad].

Example: TdynTcl_GetSolidBodyVariable solid_body RAccelerationY

TdynTcl_GetFluidBodyInfo name info

Returns some information of the fluid body name. Several 
options are available, depending on the value of the argument 
info:

nnormals: a list of nodal normals for the body is returned. 

enormals: a list of normals of the body elements is 
returned.
nareas: a list of the areas associated with every body node 
is returned. 
eareas: a list of the areas of every element of the body is 
returned. 
area: the area of the body is returned.

Example: TdynTcl_GetFluidBodyInfo fluid_body nnormals

TdynTcl_GetSolidBodyInfo name info

Returns some information of the solid body name. Several 
options are available, depending on the value of the argument 
info:

nnormals: a list of nodal normals for the body is returned. 

enormals: a list of normals of the body elements is 
returned.
nareas: a list of the areas associated with every body node 
is returned. 
eareas: a list of the areas of every element of the body is 
returned. 
area: the area of the body is returned.

Example: TdynTcl_GetSolidBodyInfo solid_body eareas

TdynTcl_X/Y/Z

Returns the x coordinate of the current node. This function can 
only be used in those tcl functions called from entries of 
Materials and Boundaries windows. The returning value is given 
in [m]. Example: TdynTcl_Y

TdynTcl_Index type

Returns the index of the current node. Depending on type, the 
global (type = 0), fluid (type = 1) or solid (type = 2) index is 
returned. This function can only be used in those tcl functions 
called from entries of Materials and Boundaries windows.

TdynTcl_ODDLSLevel inode

Returns the level of the node inode given by the levelset 
function (i.e. nodes connected to free surface have level 1 for 
the fluid of interest and level -1 for the rest, the rest of the 

nodes have a increasing (or decreasing) level given by the 
shortest path required to arrive to 1 or -1 nodes). Example: 
TdynTcl_ODDLSLevel 10

TdynTcl_Create_Interpolator

Creates an interpolator structure and returns its name. An 
interpolator can be used to interpolate data from nodal values 
of an initial mesh to a final mesh or the other way around.

Example: set interpolator [TdynTcl_Create_Interpolator]

 TdynTcl_Release_Interpolator

Deletes an interpolator structure. Example: 
TdynTcl_Release_Interpolator $interpolator

 TdynTcl_Read_Interpolator_Mesh interpolator intial/final 
mesh_file

Reads a mesh file and inserts it in the interpolation structure. 
The arguments are the interpolator name, initial or final (i.e. 
original or final mesh) and the file name. 

The mesh file must use the standard GiD ASCII format (see 
http://www.gidhome.com/support_team/ for further 
information).

Example: TdynTcl_Read_Interpolator_Mesh $interpolator initial 
{C:/Temp/meshi.msh}

TdynTcl_Insert_Interpolator_Mesh interpolator initial/final 
name

Inserts a body mesh in the interpolation structure. The 
arguments are the interpolator name, initial or final (i.e. original 
or final mesh) and the body name or the keywords "fluid_mesh" 
or "solid_mesh" for inserting the full fluid/solid mesh.

Example: TdynTcl_Insert_Interpolator_Mesh $interpolator initial 
fluid_body

TdynTcl_OnInitial_Interpolator interpolator vectorA vectorB

Performs an interpolation of vectorA (nodal values of the final 
mesh) to vectorB (resulting nodal values of the initial mesh). The 
vectorB will be overwritten with the interpolated values.

Example: TdynTcl_OnInitial_Interpolator $interpolator $vectorA 
$vectorB

TdynTcl_OnFinal_Interpolator interpolator vectorA vectorB

Performs an interpolation of vectorA (nodal values of the initial 
mesh) to vectorB (resulting nodal values of the final mesh). The 
vectorB will be overwritten with the interpolated values.

Example: TdynTcl_OnFinal_Interpolator $interpolator $vectorA 
$vector

TdynTcl_InternalToUnits units value

Convert a value from internal units to the units given as 
argument. if the value argument is omitted, the conversion 
factor for 1.0 is returned. See section Units Syntax for 
information about units syntax.

Example: TdynTcl_InternalToUnits {[m/s]}

TdynTcl_UnitsToInternal units value

Converts value from the units given as argument to internal 
units. if the value argument is omitted, the conversion factor for 
1.0 is returned. See section Units Syntax for information about 

http://www.gidhome.com/support_team/
http://www.gidhome.com/support_team/
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units syntax.

Example: TdynTcl_InternalToUnits {[bar]}

TdynTcl_SetSolveVariableOnvariable domain

Activates the solution of the Tdyn problem associated to the 
specified variable (0 = within the total domain, 1 = within the 
Fluid, 2 = within the Solid). Example: TdynTcl_SetSolveVariableOn 
velocity 0

TdynTcl_SetSolveVariableOff variable domain

Deactivates the solution of the Tdyn problem associated to the 
specified variable (0 = within the total domain, 1 = within the 
Fluid, 2 = within the Solid). Example: TdynTcl_SetSolveVariableOff 
velocity 1

TdynTcl_Clock codename start/end

Starts or finish a time measurement procedure. The results are 
saved in the standard time table.

Example: TdynTcl_Clock "Start time control" start

TdynTcl_ProjectFileName: 

Returns the name of the current project. Example: 
TdynTcl_ProjectFileName

TdynTcl_GetFluidInfo coords/xcoords/ycoords/zcoords vector

Returns coordinates of fluid material nodes, storing them in a 
vector. Different options are available, depending on the value 
of the argument info:

coords: a list of nodal coordinates for the fluid is 
returned. 

xcoords: a list of nodal X coordinates for the fluid is 
returned.

ycoords: a list of nodal Y coordinates for the fluid is 
returned. 

zcoords: a list of nodal Z coordinates for the fluid is 
returned.

Example: 

set nnod [TdynTcl_NNode 1]

set x [::mather::mkvector $nnod 0.0]

TdynTcl_GetFluidInfo xcoords $x

TdynTcl_Create_DistanceToMesh body/file [fast/precise]

Creates a structure to calculate distance to the mesh given in a 
body/boundary of mesh file in GiD format.

TdynTcl_Insert_DistanceToMesh mdistance body/file

This procedure adds a new mesh into a previously created 
mdistance

TdynTcl_Update_DistanceToMesh mdistance body/file [mesh 
index]

Updates mdistance's nodes position from a new file of due to 
the movement of body/boundary.

If any body movement if performed during calculation, this will 
only be taken into account after calling to this function.

TdynTcl_Calculate_DistanceToMesh mdistance body vector 
[numtype]

Calculates the distance to the nodes of the given 
body/boundary. The results are stored in the given vector.

TdynTcl_Delete_DistanceToMesh [mdistance]
TdynTcl_Release_DistanceToMesh [mdistance]

Deletes a mdistance (all mdistances are released if no argument 
is given).

7.4. Calling Tcl procedures

Most of the material and data fields of Tdyn CFD+HT can be 
defined by Tcl procedures. This can be done by using the tcl 
function, that executes a Tcl script or procedure returning a 
double value. The syntax of this function is tcl(.) where the 
argument is the script to be executed. Examples:

tcl(set var) : return the value of the Tcl variable var.
tcl(myproc arg) : the procedure myproc is called with 
argument arg. Procedure myproc must be defined in the 
Tcl script selected in the Tcl extension entry and must return 
a double value. 

Note that in order to use this function, Tcl extension must be 
activated by selecting Tcl extension.

7.5. Tdyn Tcl math library

Tdyn CFD+HT Tcl extension includes a basic library for vector 
operation and manipulation. The functions for vector 
manipulation can operate with temporal vector created from Tcl 
code and with internal Tdyn CFD+HT variable vectors. Internal 
Tdyn CFD+HT vectors can be accessed using the standard 
names for variables defined in Function Syntax section, but they 
have to be preceded by an 's' (for solid domain vectors) or 'f' (for 
fluid domain vectors). This way, the vector containing the x 
components of the velocity in the fluid domain can be accessed 
by 'fvx', and the temperature of the solid domain by 'stm'.

Remark:
Internal Tdyn CFD+HT vectors are in internal units (those 
defined in the user interface). The conversion factor to any 
other units can be obtained calling the procedures 
TdynTcl_UnitsToInternal or TdynTcl_InternalToUnits.

The basic functions of this library are described below.

vmexpr function(vectorname)

Performs the operation given by function in the vector 
vectorname, returning a real. Functions available for vmexpr are 
those defined in vmevaluate. Example: set ret [vmexpr 
sum_abs(fvx)]

vmexpr vector=linear_operation or vmexpr 
temp=function(linear_operation)

Calculates a linear combination of vectors, returning the results 
in vector. If vector is "temp" a new temporal vector is returned. A 
function can be applied to the results of the linear combination. 
Functions available for vmexpr are those defined in 
mather_apply_vectors. 
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Examples:

set temp [vmexpr temp=abs(2.0*fvy)]

set temp [vmexpr temp=2.0*stm]

vmexpr $phis=$phi2+$phi1

set temp [vmexpr temp=fpr-1.]

set temp [vmexpr temp=-1.0*$phi1+[expr 
$a+$b]*$phi2+3.0*$phi3+1.0]

The following functions are also available under the namespace 
::mather:: with the same name, but without the prefix wm.

Example:

::mather::mkvectororvmmkvector.

vmmkvector vectorsize defaultvalue

Creates a temporal vector of size vectorsize. This vector is 
initiated to defaultvalue. The function returns the name of the 
vector.

Example: 

set temp [vmmkvector 100 0.0]

vmdelete vectorname

Deletes the temporal vector named vectorname.

Example:

vmdelete vector2

vmvector_info name type

Access to information of the vector given by name. type can be: 
length (length of the vector), min_index (index of the minimum 
of the elements), max_index (index of the maximum of the 
elements), min_abs_index (index of the minimum in absolute 
value of the elements), max_abs_index (index of the maximum 
in absolute value of the elements) or values (return a list with 
the elements of the vector).

Example: 

vmvector_info $res values

vmdelete

Deletes all the temporal vectors.

Example:

vmdelete

vmdimtemps isize

Defines the dimension of the array of temporal vectors to isize. 
By default Tdyn CFD+HT only allows to use 100 temporal 
vectors. This function has to be called before to start using 
temporal vectors. 

Example: 

vmdimtemps 150

vmsetelem vectorname index newvalue

Set a single element of a vector to a new value.

Example:

vmsetelem stm 150 0.0

vmgetelem vectorname index

Returns a single element of a vector.

Example:

vmgetelem stm 150

vmvector_print vectorname 

Returns a string containing all the the index and value of every 
element of the vector.

Example:

vmvector_print fvy

vmapply function vectorname 

Apply a function to every value of the vector named vectorname. 
Available functions are abs, sqrt, cos, sin, tan, acos, asin, atan, 
cosh, sinh, tanh, log, log10, exp, square, inverse and opposite. 

Example:

vmapply sqrt temp2

vmevaluate function vectorname
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Apply a function to a vector named vectorname. Available 
functions are sum, sum_abs, min_val, max_val, min_abs, 
max_abs, min_signed, max_signed, sumsq, norm, mean, 
fintegral, sintegral, fintegralnorm, sintegralnorm.

Examples: 

vmevaluate min_val temp2

vmevaluate sintegral stm

vmevaluate fintegral ftm

vmupdate vectorname newvalue

Sets the ith value of vectorname to the i-1th. The last value of 
vectorname is set to newvalue.

vmexists_vector vectorname

Returns 1 if the vector vectorname exists in the current 
problem. vectorname can be any of the standard vector names 
of Tdyn CFD+HT shown in Function Syntax section.

vmexists_smatrix matrixname

Returns 1 if the matrix matrixname exists in the current 
problem. The argument matrixname is generally composed of a 
key name and a prefix (f- for fluid domain and s- for solid 
domain):

N_DNx: matrix ∫ΩNi·dNj/dNx dΩ

N_DNy: matrix ∫ΩNi·dNj/dNy dΩ

N_DNz: matrix ∫ΩNi·dNj/dNz dΩ

DN_DN: matrix ∫Ω∇Ni∇Nj dΩ 

DNx_DNx: matrix ∫ΩdNi/dNx·dNj/dNx dΩ

DNx_DNy: matrix ∫ΩdNi/dNx·dNj/dNy dΩ

DNx_DNz: matrix ∫ΩdNi/dNx·dNj/dNz dΩ

DNy_DNy: matrix ∫ΩdNi/dNy·dNj/dNy dΩ

DNy_DNz: matrix ∫ΩdNi/dNy·dNj/dNz dΩ

DNz_DNz: matrix ∫ΩdNi/dNz·dNj/dNz dΩ

SDNx_DNy: matrix ∫ΩdNi/dNx·dNj/dNydΩ+∫Ω

dNi/dNy·dNj/dNxdΩ

SDNx_DNz: matrix ∫ΩdNi/dNx·dNj/dNzdΩ+∫Ω
dNi/dNz·dNj/dNxdΩ

SDNy_DNz: matrix ∫ΩdNi/dNy·dNj/dNzdΩ+∫Ω
dNi/dNz·dNj/dNydΩ

N_N: matrix ∫Ω Ni Nj dΩ

STAB: matrix ∫Ω∇Ni (vxv)∇Nj dΩ

Furthermore, the system matrix of a problem is accessed with 
the key name SYS, and the system matrix for every component 
of the velocity vector with the key name VSYS.

Finally, the mass matrix of the boundary mesh of any body can 
be accessed using the prefix f- or s- and the name of the 
corresponding body.

Remark:

Any of these matrices can be or not available 
depending on the problem.

Examples: fn_n, sbody, fdn_dn, sdnx_dnx.

vmsmatrix_getelem matrixname irow icol

Returns the element of the matrix in the position irow icol.

vmsmatrix_setelem matrixname irow icol value

Sets the element of the matrix in the position irow icol to value.

vmmatrix_copy matrixname matrixname2

Copies matrixname2 to matrixname.

vmmatrix_add matrixname matrixname2

Adds matrixname2 to matrixname.

vmmult_matrix_per_vec matrixname vectorname vectorname2

Multiplies matrixname by vectorname and saves the result in 
vectorname2.

vmmult_matrix_per_vec_add matrixname vectorname 
vectorname2

Multiplies matrixname by vectorname and adds the result to 
vectorname2.

vmmult_matrix_per_vec_sub matrixname vectorname 
vectorname2

Multiplies matrixname by vectorname and subtracts the result 
from vectorname2.

vmmult_matrixt_per_vec matrixname vectorname vectorname2

Multiplies the transpose of matrixname by vectorname and 
saves the result in vectorname2.

vmmult_matrixt_per_vec_add matrixname vectorname 
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vectorname2

Multiplies the transpose of matrixname by vectorname and 
adds the result to vectorname2.

vmmult_matrixt_per_vec_sub matrixname vectorname 
vectorname2

Multiplies the transpose of matrixname by vectorname and 
subtracts the result from vectorname2.

vmmatrix_vector_mult_add matrixname vectorname 
matrixname2 {add_arg}

Multiplies matrixname by the elements of vectorname and adds 
the result to matrixname2 (B=A·v). If the additional add_arg is 
given, other type of matrix-vector operations can be done. For 
add_arg=1, the operation carried out is B=1/2·[A·v+(AT.v)T]. For 
add_arg=2, the operation done is similar to the previous case, 
but the result of the operation is limited if the element of the 
matrix is negative. For add_arg=3, the operation performed is B
=(AT.v)T.

vmmatrix_scalar_mult_add matrixname value matrixname2

Multiplies matrixname by value and adds the result to 
matrixname2.

vmmult_vector_per_vec vector vector2 resvector

Multiplies two vectors (vector and vector2) component by 
component and saves the result in resvector.

vmquot_vector_per_vec vector vector2 resvector

Calculates the quotient of the components of two vectors 
(vector and vector2) and saves the result in resvector.

vmcreate_function domain function

::mather::create_function domain function

Creates a Tdyn function to be used in the Tcl script. Domain 
must be fluid/solid/waves (waves is used for Seakeeping 
analysis). The functions returns the function name assigned.

Further information on the Tdyn functions syntax can be find at 
Function Syntax.

vmevaluate_function function [ipnt]

::mather::evaluate_function function [ipnt]

Evaluates a Tdyn function created in the Tcl script. If ipnt is 
given, the function is evaluated for the node of index ipnt.

vmdelete_function function_name

::mather::delete_function [function_name]

Deletes a previously created function given by function_name.

mather_initcoupling type port timeout

::mather::initcoupling type port timeout

Initiate coupling library of Tdyn. Coupling library allows to 
interchange information at memory level among two Tdyn 
instances.

type must be 0,1,2 indicating whether this instance will act as 
server (1), client (2) or any of them (0, randomly selected). 

mather_insertcouplingmesh name/file

::mather::insert_coupling_mesh name/file

Inserts a mesh to interpolate data from one side of the 
communication interface to the other. The input data must be 
the internal name of a body mesh or a file containing a mesh in 
GiD ASCII format. 

mather_retrievecouplingheader

::mather::retrieve_coupling_header

Starts a reading communication sequence. The execution of the 
current instance is paused until a confirmation of reception is 
received. This confirmation must be sent by other instance by a 
call to ::mather::send_coupling_vector. 

The procedure returns a Tcl list containing the data type id 
(integer), the corresponding time step (double) and the size of 
the vector that will be sent immediately (integer).

mather_sendcouplingvector name type step

::mather::send_coupling_vector name type step

Sends a vector given by name to other Tdyn instance. 

mather_retrievecouplingvector name

::mather::retrieve_coupling_vector name

Reads the information sent by other Tdyn instance by means of 
::mather::send_coupling_vector, and saves the data to vector 
name. A previous call to ::mather::retrieve_coupling_header is 
required.

mather_retrievecouplingconvergence

::mather::retrieve_coupling_convergence

Reads the convergence information sent by other Tdyn instance 
by means of ::mather::send_coupling_convergence, and return 1 
(convergence obtained) or 0 (not converged).

mather_sendcouplingconvergence step 0/1

::mather::send_coupling_convergence

Sends convergence information to other Tdyn instance. The 
arguments are the time step and the convergence status (1 for 
'convergence obtained', or 0 for 'not converged').

7.6. Examples of scripts defining a Tcl extension

The scripts below show examples of procedures defining a Tdyn 
CFD+HT Tcl extension. In order to execute these procedures, 
they have to be saved to a file and the file has to be inserted in 
the Tcl extension entry in the Fluid Dynamics & Multi-
PhysicsData > Other | General data page.

More practical examples of Tcl extension can be found in the 
Tdyn Tutorials manual: see Ekman's Spiral and Taylor-Couette 
flow tutorials.

Tcl script example 1: Write a notice in Tdyn's info file

The following script (TdynTcl_AssembleFluidSpecies) is executed 
every time the system of equations for species problem is 
assembled. It just writes a message to the standard Tdyn 
CFD+HT output (Calculate > View process info...).

proc TdynTcl_AssembleFluidSpecies { ispecies } {

 # Reading Tdyn CFD+HT internal time
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 set t [TdynTcl_Time]

 # Writing a message in Tdyn CFD+HT info window
 TdynTcl_Message "Executing TdynTcl_AssembleFluidSpecies 
$ispecies: time $t" notice

}

Tcl script example 2: Fix pressure values

The following script is invoked every time the pressure system 
of equations is assembled. It fixes the value of the pressure to 
y^2+1.

proc TdynTcl_AssembleFluidPressure { } {

 # Reading the number of total nodes
 set nnode [TdynTcl_NNode 0]
 # Imposing boundary conditions

 for { set i 1 } { $i <= $nnode } { incr i } {

 # Check if the node is in the fluid domain

 if { [TdynTcl_IsFluid $i] } {

 # Read y coordinate of the node i

 set y [TdynTcl_Coord $i 2]

 # Fix degree of freedom i to y^2+1

 TdynTcl_FixSystemRow $i [expr pow($y,2)+1]

 }

 }

}

Tcl script example 3: Write results in a file

The following script is invoked once the current time step is 
finished. It writes the velocity values of several points to a file.

proc TdynTcl_FinishStep { } {

 # Open file "C:/Temp/writing_in_this_file" ...
 cd {C:/Temp}

 set fileid [open writing_in_this_file w+]

 # ... and writes some info for a list of nodes
 set nodelist [list 1 2 3 4 5]
 puts $fileid "Velocity info for time $t"

 foreach inode $nodelist {

 puts $fileid "Velocity of node $inode: \

 [TdynTcl_VecVal vx $inode] \

 [TdynTcl_VecVal vy $inode] \

 [TdynTcl_VecVal vz $inode]"

 }

 # Finally close the file

 close $fileid

}

Tcl script example 4: Impose traction on fluid body

The following script is called every time the velocity system of 
equations is assembled. It imposes a traction on the nodes of 
the fluid body "wind" that is defined through the user interface 
in the standard way.

proc TdynTcl_AssembleFluidMomentumX { } {

 TdynTcl_Message "Imposing traction in fluid momentum X 
equation" notice

 # Value of traction

 set value 1.0

 # Read the list of nodes of the fluid body "Wind"

 set nodes [TdynTcl_GetFluidBodyNodes wind]

 # Create a traction vector

 set nnode [TdynTcl_NNode 1]

 set tract [::mather::mkvector $nnode 0.0]

 foreach inode $nodes {

 set jnode [TdynTcl_GlobalToFluid $inode]

 ::mather::setelem $tract $jnode $value

 }

 # Calculate the FEM integral of the traction

 set temp [::mather::vmexpr temp=fwind*$tract]

 # Assemble the terms

 foreach inode $nodes {

 set jnode [TdynTcl_GlobalToFluid $inode]

 set ri [TdynTcl_GetRhs $jnode]

 set ti [::mather::getelem $temp $jnode]

 TdynTcl_SetRhs $jnode [expr $ri+$ti]

 }

 # Delete the temporal vectors

 ::mather::delete $tract

 ::mather::delete $temp

}

Tcl script example 5: Loading Tk package

The following script loads Tk package. Tk is Tcl a library, 
including basic elements for building a graphical user interface. 
Once this library is loaded, graphic elements can be created 
from the Tdyn Tcl interface. In this example, a text window is 
created and then every time step, the text "Step 
$Current_Step$" is printed in that window.

In the following code, the full Tcl installation is assumed to be in 
the directory "C:\Program Files\Tcl\lib". The full Tcl installation 
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can be downloaded from http://www.activestate.com/activetcl/.

# Define directory of the Tcl installation

lappend ::auto_path {C:\Program Files\Tcl\lib}

TdynTcl_Message [package require Tk] notice

# Creates a text window

pack [text .t -width 70 -height 20]

# Prints information in the text window

proc TdynTcl_StartNewFluidStep { } {

 set step [TdynTcl_Step]

 .t ins end "Step $step\n" ; .t see end ; update

}

Tcl script example 6: Interpolates data from one mesh 
to other

The following example interpolates the nodal values of the 
pressure from a Fluid Body mesh of Tdyn, on a mesh read from 
a file. Both meshes must represent the same geometry.

The mesh file read from a file must use the standard GiD ASCII 
format (see http://www.gidhome.com/support_team/ for 
further information).

proc TdynTcl_FinishProblem { } {

# Creates an interpolator structure
set interpolator [TdynTcl_Create_Interpolator]

# Insert first mesh (A) - Fluid Body called "Wall/Bodies Auto1"

 TdynTcl_Insert_Interpolator_Mesh $interpolator initial "Wall/Bodies 
Auto1"

 # Insert second mesh (B) from file C:/Temp/bmesh.msh

 TdynTcl_Read_Interpolator_Mesh $interpolator final 
{C:/Temp/bmesh.msh}

 # Creates a vector (dimension of the number of nodes of mesh B is 
set to nnod)

 set nnod 587

 set res [::mather::mkvector $nnod 0.0]

 # Performs an interpolation of the pressure values in mesh A to 
mesh B

 TdynTcl_OnFinal_Interpolator $interpolator fpr $res

 # Writes the resulting values in a file (GiD postprocessing format)

 cd {C:/Temp}

 set fileid [open output_file w+]

 puts $fileid "GiD Post Results File 1.0"

 puts $fileid "Result Pressure Analysis 1 Scalar OnNodes"

 puts $fileid "Values"

 puts $fileid [::mather::vector_print $res]

 puts $fileid "End Values"

 close $fileid

 # Deletes interpolator structure

 TdynTcl_Release_Interpolator $interpolator

}

Tcl script example 7: Debugging a Tcl script with 
Ramdebugger

RamDebugger is a graphical debugger for Tcl-TK. With 
RamDebugger, it is possible to make Local Debugging, where 
the debugger starts the program to be debugged. and Remote 
debugging, where the program to debug is already started and 
RamDebugger connects to it. The latter option will be used in 
this case.

Remark:
In Windows, it is necessary to load the package comm (not 
the standard, but the one modified in RamDebugger), in 
order to debug the program remotely.

To debug the following example:

1.  open it with Ramdebugger and set a breakpoint in the line 
"TdynTcl_Message "Set a breakpoint in this line" notice". 

2. Then execute Tdyn, and wait for a few seconds, until the 
execution freezes. 

3. Go to Ramdebugger and select .

File ► Debug on ► Tdyn

4. Tdyn execution will restart until the breakpoint is find.

Remark:
If Tdyn is not included in the list of "Remote TCL 
debugging" programs, select  to update the list.

File ► Debug on ► Update remotes

# Load package commR

# Change the directory below with the one where Ramdebugger 
is intalled

lappend ::auto_path {C:/Utils/RamDebugger7.0/addons}

TdynTcl_Message [package require commR] notice

set ret [package require commR]

# This register Tdyn for debugging 

comm::register Tdyn 1

# Add breakpoint beyond this point. 

# breakpoints only work inside a proc.

proc TdynTcl_FinishStep {} {

TdynTcl_Message "Set a breakpoint in this line" notice
TdynTcl_Message "Click the arrow button to go to this line" 
notice
TdynTcl_Message "Click the arrow button to go to this line" 
notice

}

# Program gets stopped here waiting for the debugger to connect

commR::wait_for_debugger

http://www.activestate.com/activetcl/
http://www.gidhome.com/support_team/
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Tcl script example 8: Solving the wave equation using 
URSOLVER

This example shows how to solve the following wave equation:

d2φ/dt2-c2·Δφ=0

The procedure to solve it requires to create a new phi variable 
(ph1) using URSOLVER module. All the properties of the new 
variable have to be set to zero except f2, that have to be set to 
the square of the wave velocity (phase speed). In the following 
picture f2 is set to the value corresponding to a gravity wave of 
11 m length.

Definition of the properties of the phi variable.

The model has to be completed with the proper initial and 
boundary conditions.

The following script modifies the assembling process of the ph1 
problem, by adding the temporal term of the wave equation.

set x1 ""

set x2 ""

proc TdynTcl_StartNewFluidStep {} {

 global x1 x2

 # Create two vectors to save ph1(t-dt) and ph1(t)

 set nnod [TdynTcl_NNode 1]

 # x1 is initiated with ph1' values

 if { $x1 eq "" } {

 set x1 [::mather::mkvector $nnod 0.0]

 }

 if { $x2 eq "" } {

 set x2 [vmexpr temp=fph1]

 }

}

proc TdynTcl_AssembleFluidPhiVariable { index } {

 global x1 x2

 if { $index != 1 } { return }

 set nnod [TdynTcl_NNode 1]

 set step [TdynTcl_Step]

 set dt_i [expr 1.0/[TdynTcl_Dt]]

 set dt2i [expr pow($dt_i,2.0)]

 # Assemble temporal term (ph1'')

 if { $step == 1 } {

 set x2_ [vmexpr temp=$dt2i*$x2]

 set x1_ [vmexpr temp=$dt_i*$x1]

 } else {

 set x2_ [vmexpr temp=2.0*$dt2i*$x2]

 set x1_ [vmexpr temp=-$dt2i*$x1]

 }

 # Assemble ph1(t+dt)/dt^2

 ::mather::matrix_scalar_mult_add fsys $dt2i fn_n 

 # Assemble (right hand side) 2.0*ph1(t)/dt^2

 ::mather::mult_matrix_per_vec fn_n $x2_ frhs 

 # Assemble (right hand side) -ph1(t-dt)/dt^2

 ::mather::mult_matrix_per_vec_add fn_n $x1_ frhs

 ::mather::delete $x1_

 ::mather::delete $x2_

}

proc TdynTcl_FinishFluidStep {} {

 global x1 x2

 # Update phi values

 vmexpr $x1=$x2

 vmexpr $x2=fph1

}

Tcl script example 8: Distance to body calculation

The following example, creates the structure to calculate the 
distance to the body "group2". Afterwards, the distance is 
calculated every step and stored in the vector "vector0".

set myvec ""

set mydistance ""

proc TdynTcl_InitiateProblem {} {

 global myvec mydistance

 TdynTcl_Clock "Distance evaluation" start
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 set myvec [::mather::mkvector vector0 [TdynTcl_NNode 2] 0.0 ]

 set mydistance [TdynTcl_Create_DistanceToMesh group2 
precise]

 TdynTcl_Clock "Distance evaluation" end

}

proc TdynTcl_FinishSolidStep {} {

 global myvec mydistance

 if { [TdynTcl_Step] == 1 } {

 set name "Distance evaluation 1"

 } else {

 set name "Distance evaluation"

 }

 TdynTcl_Clock $name start

 # Note numtype argument (0,1 or 2) is optional in the following

 TdynTcl_Update_DistanceToMesh $mydistance group2

 TdynTcl_Calculate_DistanceToMesh $mydistance group1 
$myvec

 TdynTcl_Clock $name end 

} 

Tcl script example 9: Distance to body calculation

8. Some comments on Boundary Conditions

In many real applications, there is a frequent difficulty in 
defining some of the boundary conditions at the inlet and outlet 
of a calculation domain in the detail that is needed for an 
accurate simulation. A typical example is the specification of 
turbulence properties (turbulence intensity and length scale) at 
the inlet flow boundary, as these are rarely available for a new 
design configuration. Other examples are the specification of 
the boundary layer velocity profile on the walls at an inlet, or 
the precise distribution of a species concentration at an inlet 
boundary.

Next a brief list of recommendations about boundary conditions 
prescription is given.

8.1. General guidelines on boundary conditions

The velocity and turbulence variables have to be prescribed 
at the inlet boundary. The pressure is sometimes also 
specified at the inlet boundary. Turbulence variables are 
automatically prescribed at the inlet boundaries in Tdyn 
CFD+HT.

If the conditions at inlet are not well known, examine the 
possibilities of moving the domain boundaries to a position 
where boundary conditions are better identified.

Check whether upstream or downstream obstacles (such as 
bends, contractions, diffusers, etc.) outside of the flow 
domain are present which could significantly affect on the 
flow distribution. Often, information about components 
upstream or downstream of the domain is lacking or not 
available at the beginning of a project.

For each class of problem that is of interest, carry out a 
sensitivity analysis in which the boundary conditions are 

systematically changed within certain limits to see the 
variation in results. Should any of these variations prove to 
have a stronger effect on the simulated results, and lead to 
large changes in the simulation, it is necessary to obtain 
more accurate data on the boundary conditions that are 
specified.

Place open boundary conditions (outflow, or pressure 
prescription) as far away from the region of interest as 
possible and avoid open boundaries in regions of strong 
geometrical changes or in regions of re-circulation.

Pay an extra attention to the orientation of outlet planes 
with regard to the mean flow, especially when the 
boundary condition consists of a constant pressure profile.

Select the boundary conditions imposed at the outlet to 
have only a weak influence on the upstream flow. Extreme 
care is needed when specifying flow velocities and 
directions on the outlet plane.

Particular care should be taken in strongly swirling flows 
where the pressure distribution on the outlet boundary is 
strongly influenced by the swirl. It is therefore not 
acceptable to specify constant pressure across the outlet.

Be aware of the possibility of inlet flow inadvertently 
occurring at the outflow boundary, during the simulation 
process. This fact may lead to difficulties in obtaining a 
stable solution or even to an incorrect solution. If it is not 
possible to avoid this by relocating the position of the 
outlet boundary in the domain, try to avoid the problem by 
restricting the flow area at the outlet, provided so that the 
outflow boundary is not near the region of interest. If the 
outflow boundary condition allows the flow to re-enter the 
domain, the value of all transported variables should be 
imposed as in an inlet boundary.

If there are multiple outlets, impose either pressure 
boundary conditions or velocity specifications depending 
on the known quantities.

Tdyn CFD+HT allows not making any prescription in the 
pressure field. If no prescription of the pressure is done, 
some instabilities may appear.

Be aware that Tdyn CFD+HT will impose default boundary 
conditions for regions of the domain boundaries, where the 
user has not specified anything. Tdyn CFD+HT also fixes all 
the turbulence variables in those entities where all 
components of the velocity have been prescribed. These 
prescriptions are done due to numerical stability reasons 
and in most of the cases will not affect the results.
If possible, carry out a sensitivity analysis in which the key 
inlet boundary conditions are systematically changed 
within certain limits. Depending on the problem, the key 
parameters that might be examined are: inlet flow 
direction and magnitude, uniform distribution of a 
parameter or a profile specification (for example a uniform 
inlet velocity or an inlet velocity profile), physical 
parameters and turbulence properties at inlet.

9. Function Syntax

Most of the material and data fields of Tdyn CFD+HT may be 
defined by functions, through a "Function editor". Those data 
fields can be inserted by means of the function editor by 
pressing buttons shown in the following figure. Note that these 
buttons are only available in those pages where any function 
field exists.

Function editor button
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The "Functions editor" allows for comfortable definition of 
complex functions and matrices. Such an editor includes some 
tools to help the insertion of functions as for instance a list of 
available variables and operators.

Next a brief explanation of the syntax of the functions used in 
Tdyn CFD+HT is given.

Variables:

The variables that can be used for the definition of the functions 
are presented next.

Global variables, available for any function:

t : Total (physical) time

it : Interval time. Time from the last restarting of the 
problem.

dt : Time increment.
rand : Random number.
step : Current step of the analysis.

Geometrical variables, available for functions in domain scope 
(fluid or solid domain functions):

x : X cartesian coordinate of the point.

y : Y cartesian coordinate of the point.

z : Z cartesian coordinate of the point.

rhoc : ρ corresponding to cylindrical coordinates of the 
point. ρ is given by ρ=√(x2+y2)

thetac : θ corresponding to cylindrical coordinates of the 
point. θ is given by θ=atan(y/x).

rhos : ρ corresponding to spherical coordinates of the point. 
ρ is given by ρ=√(x2+y2+z2)

thetas : θ corresponding to spherical coordinates of the 
point. θ is given by θ=atan(y/x).

phis : φ corresponding to spherical coordinates of the point. 
φ is given by φ=atan(√(x2+y2)/x)

nx : X component of the point normal.

ny : Y component of the point normal.

nz : Z component of the point normal.

Unknowns or physical properties that can be used in fluid 
domain scope:

Remarks:
Unknowns variables or physical properties are evaluated by 
default within functions in general units. Furthermore it is 
possible to define the units to be used in the function. In these 
cases, the units must be inserted after the variable name 
between square brackets.

Examples:

vx[m/s]/2

pr[bar]+1

sp1[%]+10

It is also possible to obtain the value of the physical properties 
in a particular node. 

Examples:

vx(#node)

pr(#node)

vx : X velocity component at the point (Fluid Flow module).

vy : Y velocity component at the point (Fluid Flow module).

vz : Z velocity component at the point (Fluid Flow module).

pr : Pressure of the point (Fluid Flow module).

pt : Thermodynamic pressure (total pressure, including 
hydrostatic term plus operating pressure). Only available 
when solving fluid flow (Fluid Flow module).

vt : Eddy viscosity at the point (only available if turbulence 
model is selected) (Fluid Flow module).
ke : Eddy kinetic energy at the point (only available if 
turbulence model, based in the k equation is selected) 
(Fluid Flow module).
ep : Epsilon value at the point (only available if k-epsilon 
turbulence model is selected) (Fluid Flow module).
om : Omega value at the point (only available if k-omega 
turbulence model is selected) (Fluid Flow module).
kt : Ktau (k*tau) value at the point (only available if k-ktau 
turbulence model is selected) (Fluid Flow module).
bt : Beta (wave elevation) value at the point (Free Surface-
Transpiration module).

dn : Density of the point.

vs : Viscosity of the point (Fluid Flow module).

kvs : Kinematic viscosity of the point (Fluid Flow module).

cm : Compressibility factor at the point (Fluid Flow module).

tm : Temperature of the point (Fluid Flow module).

cp : Specific heat of the point (Fluid Flow module).

kis : Heat conductivity of the point for fluids (Fluid Flow 
module).
sp : Concentration of the corresponding species at the point 
(Species Advection module). Number of species must be 
indicated after sp (i.e. sp1, sp7)

ph : Value of the corresponding variable at the point (PDE's 
solver module). Number of variable must be indicated after 
ph (i.e. ph1, ph7)

ds : Distance of the point to the closest wall (Fluid Flow 
module).
mx : Accumulated mesh deformation of the point in the x 
direction (Mesh Deformation module).
my : Accumulated mesh deformation of the point in the y 
direction (Mesh Deformation module).
mz : Accumulated mesh deformation of the point in the z 
direction (Mesh Deformation module).
ols : Level set field defining free surface (Free Surface-Odd 
Level Set module).

Remarks:
Variables are evaluated at the previous time step (t-dt).
Variables are only available when corresponding module is 
active.

Unknown or physical properties functions that can be used in 
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solid domain scope:

vx : X velocity component at the point (Fluid Flow module).

vy : Y velocity component at the point (Fluid Flow module).

vz : Z velocity component at the point (Fluid Flow module).

pr : Pressure of the point (Fluid Flow module).

pt: Thermodynamic pressure (total pressure, including 
hydrostatic term plus operating pressure). Only available 
when solving fluid flow (Fluid Flow module).

dn : Fluid density of the point (Fluid Flow module).

vs : Fluid viscosity of the point (Fluid Flow module).

kvs : Fluid kinematic viscosity of the point (Fluid Flow 
module).
sdn : Solid density of the point.

tm : Temperature of the point (Heat Transfer module).

cp : Specific heat of the point (Heat Transfer module).

kxx : Heat conductivity (xx) of the point (Heat Transfer 
module).
kxy : Heat conductivity (xy) of the point (Heat Transfer 
module).
kxz : Heat conductivity (xz) of the point (Heat Transfer 
module).
kyy : Heat conductivity (yy) of the point (Heat Transfer 
module).
kyz : Heat conductivity (yz) of the point (Heat Transfer 
module).
kzz : Heat conductivity (zz) of the point (Heat Transfer 
module).
sp : Concentration of the corresponding species at the point 
(Species Advection module). Number of species must be 
indicated after sp (i.e. sp1, sp7)

ph : Value of the corresponding variable at the point (PDE's 
solver module). Number of variable must be indicated after 
ph (i.e. ph1, ph7)

ds : Distance of the point to the closest wall (Fluid Flow 
module).
mx : Accumulated mesh deformation of the point in the x 
direction (Mesh Deformation module).
my : Accumulated mesh deformation of the point in the y 
direction (Mesh Deformation module).
mz : Accumulated mesh deformation of the point in the z 
direction (Mesh Deformation module).

Remarks:
Variables are evaluated at the previous time step (t-dt).
Variables are only available when corresponding module is 
active.

Examples: 
x+y

0.1*vx*vx
120.0*(tm-25)
0.1*sp2

sin(x-t)*log(y^2)

Constants:

The constants defined for functions internal compilation are:

pi : 3.1415926535897932385

exp(1) : 2.7182818284590452354

dt : Time increment of the current step.

op : Operating pressure.

infinite : Infinite.

Function operators:

The function operators calculate the value of a standard 
function at the point defined by the given argument. The 
function operators that can be used for the definition of the 
Tdyn CFD+HT functions are:

sqrt : the sqrt function calculates the square root of the 
argument. Syntax: sqrt(.)

abs : the abs function calculates the absolute value of the 
argument. Syntax: abs(.)

ln : logarithm of the argument, e base. Syntax: ln(.)

log : logarithm of the argument, decimal base. Syntax: log(.)

fac : factorial of the argument. Syntax: fac(.)

sin : sine of the argument. Syntax: sin(.) (argument given in 
radians).
cos : cosine of the argument. Syntax: cos(.) (argument given 
in radians).
tan : tangent of the argument. Syntax: tan(.) (argument 
given in radians).

asin : The asin function returns the arcsine of the argument 
in the range -π/2 to π/2 radians. Syntax: asin(.).

acos : The acos function returns the arccosine of the 
argument in the range 0 to À radians. Syntax: acos(.).

atan : The atan function returns the arctangent of the 
argument in the range -π/2 to π/2 radians. Syntax: atan(.) 
(result given in radians).

sinh : hyperbolic sine of the argument. Syntax: sinh(.).

cosh : hyperbolic cosine of the argument. Syntax: cosh(.).

tanh : hyperbolic tangent of the argument. Syntax: tanh(.).

exp : the exp function calculates the exponential value of 
the argument. Syntax: exp(.).

heaviside : the heaviside function evaluates Hs defined as: 

Hε (Φ ) = 0Φ < - ε

Hε (Φ ) = 1
2 (1 + Φ

ε + 1
π sin(π * Φ

ε ) )|Φ| < ε

Hε (Φ ) = 1Φ > ε

 The syntax of the function is heaviside(.,.), where the first 
argument is and the second .

Interpolate : performs a linear interpolation, based on the 
given data. Two arguments are required: a list of pairs (ξ,η), 
defining a polylineal curve, and a function (f) defining the 
point (ξ) where the evaluation is to be done. Syntax: 
interpolate(#ξ1,η1,ξ2,η2,ξ3,η3,...#f).

InterpolateSpline : performs a spline interpolation, based on 
the given data. Two arguments are required: a list of pairs 
(ξ,η), defining a the curve, and a function (f) defining the 
the point (ξ) where the evaluation is to be done. Syntax: 
interpolatespline(#ξ1,η1,ξ2,η2,ξ3,η3,...#f).

InterpolateFile : performs a spline interpolation, based on 
the data given in a file. Two arguments are required: a file 
name where a list of pairs (ξ,η), defining a the curve, is 
given, and a function defining the the point (ξ) where the 
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evaluation is to be done. Syntax: Interpolatefile(filename, f), 
where the first argument in the filename, and the second a 
function (f) defining the value.

srand : The rand function returns a pseudorandom integer 
in the range 0 to 1, based on the argument given as seed. 
Syntax: srand(.).

int : Integer conversos. Syntax: int(.).

- : change sign operator. Syntax: (-expression).

j0 : Calculates Bessel function of first kind and order 0, at 
the given point. Syntax: j0(.).

j1 : Calculates Bessel function of first kind and order 1, at 
the given point. Syntax: j1(.).

jn : Calculates Bessel function of first kind and order n, at 
the given point. Syntax: jn(.,.), where the first argument is 
the evaluation point and the second is the order of the 
Bessel function.
y0 : Calculates Bessel function of second kind and order 0, 
at the given point. Syntax: y0(.).

y1 : Calculates Bessel function of second kind and order 1, 
at the given point. Syntax: y1(.).

yn : Calculates Bessel function of second kind and order n, 
at the given point. Syntax: yn(.,.), where the first argument 
is the evaluation point and the second is the order of the 
Bessel function.
maxs : Maximum of the surrounding values. For a given 
point, maximum of the values of the argument for the 
connected nodes is returned. Syntax maxs(.), where the 
argument is any unknown or physical property (see 
variables section for further information).
mins : Minimum of the surrounding values. For a given 
point, minimum of the values of the argument for the 
connected nodes is returned. Syntax mins(.), where the 
argument is any unknown or physical property (see 
variables section for further information).
meds : Average of the maximum and minimum of the 
surrounding values. For a given point, average of the 
maximum and minimum values of the argument for the 
connected nodes is returned. Syntax meds(.), where the 
argument is any unknown or physical property (see 
variables information).
aver : Average of the surrounding values. For a given point, 
average of the values of the argument for the connected 
nodes is returned. Syntax aver(.), where the argument is 
any unknown or physical property (see variables 
information). Weighted average is calculated by using 
standard FEM integration on the connected elements.

maxvar : Maximum of the values of the unknown or 
physical property given as argument (see variables section 
for further information). Syntax maxvar(.).

minvar : Minimum of the values of the unknown or physical 
property given as argument (see variables section for 
further information). Syntax minvar(.).

imat or igroup: Returns 1 if the point belongs to the 
material given as argument. Note that the material name is 
actually the name of the group used to assign the material. 
This function is case insensitive. Syntax imat(.) where the 
argument is a material's name (if the point belongs to two 
contiguous materials, it returns 1 in both cases).

mat or group: Returns 1 if the material given as argument is 
being used. Note that the material name is actually the 
name of the group used to assign the material. Syntax 
mat(.) where the argument is a material's name

curv : Curvature of the variable given as argument (see 
variables section for further information). Syntax curv(.).

pfx : X Component of the pressure force of the given Body. 
Syntax: pfx(.) where the argument is a body's name.

pfy : Y Component of the pressure force of the given Body. 
Syntax: pfy(.) where the argument is a body's name.

pfz : Z Component of the pressure force of the given Body. 
Syntax: pfz(.) where the argument is a body's name.

vfx : X Component of the viscous (stress) force of the given 
Body. Syntax: vfx(.) where the argument is a body's name.

vfy : Y Component of the viscous (stress) force of the given 
Body. Syntax: vfy(.) where the argument is a body's name.

vfz : Z Component of the viscous (stress) force of the given 
Body. Syntax: vfz(.) where the argument is a body's name.

pmx : X Component of the pressure moment of the given 
Body, evaluated at its center of gravity. Syntax: pmx(.) 
where the argument is a body's name.

pmy : Y Component of the pressure moment of the given 
Body, evaluated at its center of gravity. Syntax: pmy(.) 
where the argument is a body's name.

pmz : Z Component of the pressure moment of the given 
Body, evaluated at its center of gravity. Syntax: pmz(.) 
where the argument is a body's name.

vmx : X Component of the viscous (stress) moment of the 
given Body, evaluated at its center of gravity. Syntax: vmx(.) 
where the argument is a body's name.

vmy : Y Component of the viscous (stress) moment of the 
given Body, evaluated at its center of gravity. Syntax: vmy(.) 
where the argument is a body's name.

vmz : Z Component of the viscous (stress) moment of the 
given Body, evaluated at its center of gravity. Syntax: vmz(.) 
where the argument is a body's name.

dsx : X Component of the accumulated displacement vector 
of the given Body. Syntax: dsx(.) where the argument is a 
body's name.

dsy : Y Component of the accumulated displacement vector 
of the given Body. Syntax: dsy(.) where the argument is a 
body's name.

dsz : Z Component of the accumulated displacement vector 
of the given Body. Syntax: dsz(.) where the argument is a 
body's name.

rtx : X Component of the accumulated rotation vector of the 
given Body. Syntax: rtx(.) where the argument is a body's 
name.
rty : Y Component of the accumulated rotation vector of the 
given Body. Syntax: rty(.) where the argument is a body's 
name.
rtz : Z Component of the accumulated rotation vector of the 
given Body. Syntax: rtz(.) where the argument is a body's 
name.
vlx : X Component of the velocity vector of the given Body. 
Syntax: vlx(.) where the argument is a body's name.

vly : Y Component of the velocity vector of the given Body. 
Syntax: vly(.) where the argument is a body's name.

vlz : Z Component of the velocity vector of the given Body. 
Syntax: vlz(.) where the argument is a body's name.

vrx : X Component of the rotational velocity vector of the 
given Body. Syntax: vrx(.) where the argument is a body's 
name.
vry : Y Component of the rotational velocity vector of the 
given Body. Syntax: vry(.) where the argument is a body's 
name.
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vrz : Z Component of the rotational velocity vector of the 
given Body. Syntax: vrz(.) where the argument is a body's 
name.
xcg : X Component of the center of gravity of the given 
Body. Syntax: xcg(.) where the argument is a body's name.

ycg : Y Component of the center of gravity of the given 
Body. Syntax: ycg(.) where the argument is a body's name.

zcg : Z Component of the center of gravity of the given 
Body. Syntax: zcg(.) where the argument is a body's name.

xrot : X displacement corresponding to de planar rotation of 
a point (center of rotation is the point 0,0,0). Note that if the 
geometry units and function units are different, the 
returning value must be multiplied by the units conversion 
factor.
Syntax xrot(.) where the argument is the rotation angle.

yrot : Y displacement corresponding to de planar rotation of 
a point (center of rotation is the point 0,0,0). Note that if the 
geometry units and function units are different, the 
returning value must be multiplied by the units conversion 
factor.
Syntax yrot(.) where the argument is the rotation angle.

Readfile : Execute the function in the text file defined by the 
argument. The file must include a first line defining the 
maximum time to use the function and a second line 
containing the function to be executed. If the current time 
is greater than the one defined in the file, Tdyn CFD+HT 
waits until the file is updated.

Syntax readfile(.) where the argument is the path and name 
of the file. Example readfile(C:\Temp\velx.dat). Example of 
file format:

Time = 0.1;

Function = "interpolate(#0.0,1.1,1.0,2.0#t);";

Tcl : Executes a TCL script or procedure returning a double 
value.
Syntax tcl(.) where the argument is the script to be 
executed. Example tcl(set var) return the value of tcl 
variable var.
Note: In order to use this function, TCL extension must be 
enabled by activating Tcl extension.

CloudOfDataFile : performs a local interpolation based on 
the cloud of points (x,y,z) and data (¸) given in a file. The 
argument is the path and name of the text file. Syntax: 
CloudOfDataFile(·), where the argument in the filename. 
Example CloudOfDataFile(C:\Temp\velx.dat). Example of file 
format:

0.0 0.0 0.0 1.0

0.0 1.0 0.0 0.5

1.0 1.0 1.0 2.0

5.0 2.5 2.0 5.0

Examples: 
2*sqrt(y)

x*fac(5)
srand(0)
log(abs(x))

exp(5)

interpolate(#1.0,2.0,2.0,2.5,3.0,2.0#t^2)

maxvar(vx)
mat('Fluid')

Operators:

Operators that can be used for Tdyn CFD+HT functions 
definitions are:

+ : adding operator.

Syntax: [adding_expression] + [adding_expression].

- : substraction operator.

Syntax: [substraction_expression] - 
[substraction_expression].

^ : exponent operator.

Syntax: [exponent_expression] ^ [function_expression].

* : multiplicative operator.

Syntax: [multiplicative_expression] * [multiplicative 
_expression].

/ : division operator.

Syntax: [multiplicative_expression] / [quotient_expression].

div : integer division operator int(x/y+0.5).

Syntax: ([multiplicative_expression]) div ([quotient_expres-
sion]). Example: (x)div(2+y).

idiv : integer division operator int(x/y+0.5). Similar to div 
operator but with different syntax.

Syntax: idiv ([multiplicative_expression], [quotient_expres-
sion]). Example: idiv(x,2+y).

mod : integer division module operator 
int(x+0.5)%int(y+0.5).

Syntax: ([multiplicative_expression]) mod ([quotient_expres-
sion]). Example: (t)mod(2).

imod : integer division module operator 
int(x+0.5)%int(y+0.5). Similar to mod operator but with 
different syntax.

Syntax: imod ([multiplicative_expression],[quotient_expres-
sion]). Example: imod(t,2).

rdiv : real division operator int(x/y).

Syntax: ([multiplicative_expression]) rdiv ([quotient_expres-
sion]). Example: (t)rdiv(5).

ddiv : real division operator int(x/y). Similar to rdiv operator 
but with different syntax.

Syntax: ddiv ([multiplicative_expression], [quotient_expres-
sion]). Example: ddiv(t,5).

rmod : real division module operator x/y-int(x/y).

Syntax: ([multiplicative_expression]) rmod 
([quotient_expres-sion]). Example: (t)rmod(5).

dmod : real division module operator x/y-int(x/y). Similar to 
rmod operator but with different syntax.

Syntax: dmod ([multiplicative_expression], 
[quotient_expres-sion]). Example: dmod(t,5).

max : maximum operator.

Syntax: max ([expression], [expression]). Example: max(x,y).

min : minimum operator.

Syntax: min ([expression], [expression]). Example: min(x,y).
not : not operator.

Syntax: not([function_expression]).
~ : not operator.
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Syntax: ~([function_expression]).

Examples: 
(2*y)

(5*(y+1))/2

(z*y)mod(5)

imod(z*y) (5)

(5^4)

Relational operators:

The relational (binary) operators compare their first operand 
with their second operand to test validity of the specified 
relationship. The result of the relational expression is 1 if the 
tested relationship is true and 0 if it is false. The binary 
operators that can be used for Tdyn CFD+HT functions 
definitions are:

< : less than operator.

Syntax: [expression] < [expression].

< = : less or equal than operator.

Syntax: [expression] <= [expression].

>= : greater or equal than operator.

Syntax: [expression] >= [expression].

> : greater than operator.

Syntax: [expression] > [expression].

= : equal operator.

Syntax: [expression] = [expression].

~= : not equal operator.

Syntax: [expression] != [expression].

& : and operator.

Syntax: [expression] & [expression].

| : and operator.

Syntax: [expression] | [expression].

Examples: 

(y>2)

(x<=1)
(x!=1)
(y>2)&(x>2)&(x<3)&(y<3)

Cartesian derivatives:

It is also possible to use cartesian derivatives to evaluate 
functions in solid and fluid domains. The Cartesian derivative 
operators that can be used for Tdyn CFD+HT functions 
definitions are:

dx : X Cartesian derivative. The argument must be a variable 
defined in the whole domain (not a function).

dy : Y Cartesian derivative. The argument must be a variable 
defined in the whole domain (not a function).

dz : Z Cartesian derivative. The argument must be a variable 
defined in the whole domain (not a function).

grad : Norm of the gradient of a variable. The argument must 
be a variable defined in the whole domain (not a function).

Examples: 
vx*dx(vx)

nx*dx(vx)+ny*dy(vx)

grad(vx)

if-else statement:

The if statement controls conditional branching. The body of the 
if statement (elif_expression) is executed if the value of the 
expression is non zero. The syntax for the if statement is the 
following:

if(expression)then(elif_expression)else(next_expression)endif

being elif_expression an additional expression that may include 
an elif clause with next form:

(expression2)elif(elif_expression2)then(next_expression2)

Examples: 

if(y>2)then(if(x<1)then(1)else(0)endif)else(0)endif

if(y>2)then(1)elif(x<1)then(2)else(0)endif

Remarks:

Dimensional variables used within the functions defined by the user 
are evaluated by default using general units. Nevertheless, it is also 
possible to define the units to be used for each variable within the 
function at hand. To this aim, the units must be inserted between 
square brackets after the variable name. The variables that can be 
defined with units are: t,it,dt,x,y,z and any other vector such as pr, 
vx, vy, tm, dn, ... It is also possible to define the units of any variable 
resulting from the application of a given operator over one of the 
variables described above. If this is the case, the units of the 
operation result must be indicate as well between brackets after the 
variable to which the operator under consideration operates.

Examples: 

Units on variables: 2*t[s], dt[ms], x[cm]+y[m]^2, pr[bar], 
dn[Kg/m3]
Units in operation results: dx(vx[1/s]), dxdy(tm[K/m2])

Every data field in Tdyn includes several standard units 
definition, but the user can also enter additional units based on 
the basic units definition shown in the following table.
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Examples: 

W.m (watts per meter), N/m2 (newtons per square meter), m3 
(cubic meter), g/cc (grams per cubic centimeter). 

New units can also be created by adding standard modifiers to 
the basic unit. These modifiers are shown next: 
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10. Executing Tdyn Solver

10.1. Automatically executing tdyn

Tdyn CFD+HT solver can be comfortably started through Tdyn 
pre-processing environment Calculate menu. Once the 
analysed problem is defined (i.e. the geometry is created) the 
boundary conditions assigned, and the mesh is generated, the 
Start button in the Calculate menu (or the Calculate icon) can 
be pressed.

When the Start button is pressed, the system writes the input 
file for the calculation module (the ‘calculation file’) called 
ProblemName.flavia into the ProblemName.gid directory, and 
then the compassfem.tdyn?d.win.bat file from the Tdyn 
problemtype directory is executed, with the following 
arguments:

Argument 1: Problem name

Argument 2: Problem directory

Argument 3: Problemtype directory

From within the compassfem.tdyn?d.win.bat batch file, the 
program executable tdyn.exe is called, with the name of the 
input file given as an argument. Now tdyn.exe is started and 
creates a number of output files (see section Output files for a 
brief description of the files generated during the execution).

10.2. Manually executing tdyn

Sometimes it can be interesting to run the Tdyn executable 
manually (without using the graphic user interface of the 
software). The necessary steps are described here. 

From here in advance, the following notation will be employed 
for description purposes:

$gidpath : root directory of the installed program. It contains, 
among others, the gid.exe executable file called to run the GiD 
custom GUI.

$CompassFEM_version : CompassFEM problemtype version 
name.

$inputpath : directory that contains the tdyn input data file.

$modelname : name of the input data file.

First, the input data file required by the Tdyn executable must 
be generated before execution. To this aim, the corresponding 
model must be loaded to the GiD custom interface.

Next, the input data file must be exported, assuming that the 
model setup has been finished successfully (applying material 
properties and boundary conditions) and that the mesh has 
been already generated. In order to export the input file, the 
following menu sequence must be used:

Files ► Export ► Calculation file...

By doing this, the user will be asked for a file name 
($modelname) and location ($inputpath). By default, .dat 
extension will be used to export de input file. If desired, .flavia 
extension can be also specified for instance, trying to mimic the 
file name convention used when running Tdyn automatically.

Before execution, you must ensure that the tdyn process is able 
to find a password.txt file containg a valid tdyn password. You 
can create such a text file manually and copying the password 
inside. Alternatively, the password.txt file can be copied from 
the directory $gidpath\problemtypes\$CompassFEM_version\
compassfem.gid , whereit is automatically saved if tdyn 

passwords have been previously registered through the GiD 
custom GUI. For manual execution of tdyn, the password file 
must be located either next to the tdyn.exe executable (this is 
on the previously mentioned $gidpath\problemtypes\$Compa
ssFEM_version\compassfem.gid\exec directory) or next to the 
input file.

After exporting the input file and copying a valid password.txt 
file, everything is ready to launch tdyn manually. To this aim, 
open a command shell and move to the location of the tdyn.exe 
executable. Such a location will be typically of the form:

$gidpath\problemtypes\$CompassFEM_version\compassfe
m.gid\exec

Note thattdyn.exe may be also executed from an arbitrary 
location if the directory path above is convinientlly added to the 
environment system variable PATH.

Finally, launch tdyn by using the following command line:

\:> tdyn.exe -name "$inputpath\$modelname"

Optionally, the argument -2D or -3D can be passed to tdyn.exe 
indicating the spatial dimension of the problem under analysis. 
In any case, Tdyn will check against the input file the validity of 
the specified dimension. If the given argument is not consistent 
with the input file information, Tdyn process will end with an 
error.

10.3. Output files generated during process 
execution
ProblemName.flavia.inf : Text file containing global information 
as well as process information for each time step. The content 
of this file can also be accessed during calculation through the 
GUI by using the menu option Calculate > View process info.

ProblemName.flavia.out : Text file containing detailed 
information of the calculation for each time step.

ProblemName.flavia.tim : Text file that contains a timetable 
giving information on the CPU time consumption of the 
process. The timetable contains a report of the execution time 
used by different parts of the problem. This file is only available 
after the successful calculation of a problem.

ProblemName.flavia.err : Text file containing error message (file 
created only if Tdyn exits with an error).

ProblemName.flavia.for : Text file that contains time evolution 
of the various components of forces and moments calculated 
over each body. This forces and moments file contains the 
forces and moments that act on the surfaces with Fluid Body 
properties assigned. Forces are often used to evaluate the 
convergence of a simulation. The file can be opened from within 
Custom GiD interface, using the options in the Utilities menu or 
in a spreadsheet program (like MS Excel) or another plotting 
utility (like Gnuplot). The first few time steps should be excluded 
from the graph, because the forces can oscillate at very high 
values due to the start up process, which can change the order 
of magnitude of the graph scales.

ProblemName.flavia.mov : Text file that contains time evolution 
data of body movements.

ProblemName.flavia.nor : Text file that contains time evolution 
information of the convergence norms associated to each 
problem variable.

ProblemName.flavia.res : Results file that contains all field 
valued results. When pressing Postprocess in Custom GiD, this 
file is loaded, and the results it contains can be visualized in the 
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post-processing module. Also note that each calculation will 
delete a previous results file that might exist in this directory, 
unless it has been renamed before the new calculation process 
has been started.

ProblemName.flavia.rst : Restart file that contains the necessary 
results to be used when restarting a previous calculation. The 
restart file contains the velocities, pressures, and other relevant 
data of the last time-step that has been written into the restart 
file. If Tdyn is started with the option Restart: On (that have to be 
set in the PROBLEM window) the file ProblemName.flavia.rst is 
read and the calculation will be restarted using the last time-
step data as initial condition. This file is updated each time-step 
that the results are written into the results file 
(ProblemName.flavia.res). Thus even a process that has not yet 
terminated can be killed and restarted with the option Restart: 
On, without having to recalculate all the time steps from the 
beginning. By killing the process, only the time steps from the 
last step that has been written into the results file onwards will 
be ‘lost’ and will have to be recalculated in case of a restart. 
Note that the restart file will be written in any case - even in the 
case that a calculation is started with the Restart: Off option. Also 
note that each time the restart file is updated, as well as with 
each new calculation, a restart file that might already exist in 
the problem directory will be deleted unless it has previously 
been renamed.

ProblemName.flavia.ram.res : Forces results for structural 
analysis using Ram-Series.

ProblemName.flavia.sat : Sink & Trim data.

ProblemName.flavia.ram.msh : Mesh for structural analysis 
using Ram-Series.
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